
NAVAL POSTGRADUATE SCHOOL
Monterey, California

In

DTIC
R AD % ELECTE

MARO 6 1991n

THESIS

DESIGNING A VIRTUAL-MEMORY IMPLEMENTATION USING THE

MOTOROLA MC68010 16-BIT MICROPROCESSOR WITH

MULTI-PROCESSOR CAPABILITY INTERFACED TO THE VMEbus

by

David M. Sendek

June 1990

Thesis Advisor: Larry W. Abbott

Approved for public release; distribution is unlimited.

91 3 04 004

Unclassified
SECLR -V CLASS,' C,7 O O; -1 S PAGE

Form Appro ed

REPORT DOCUMENTATION PAGE OmBNo 004o0188

la REPORT SECdRTY CASSW CAThON 1t RESTR:CTVE MARr NGS

UNCLASSTFTED
2a SECURI'Y CLASS' CA- ON A,7OR _'y 3 DSTR Bf.ON. AVA LAB J

. T OF RE0P

20 DECLASSIriCAThON DOVL'NGRAD NC SCHEDULE Approved for public release;
distribution is unlimited.

4 PERFORMANG ORGAVZAT ON REPORT NuMBERIS) 5 Mor
TORING ORGAN ZATON REPORT %, ,ZSEa.S

6a NAME OF PERFORMANG ORGAN ZATiON 6b OFF CE SYMBOL 7a NAME Of . RNG ORGAN ZAON
(If applicable)

Naval Postgraduate School EC Naval Postgraduate School
6c ADDRESS (City State. and ZIP Code) 7D ADDRESS (City State and ZIP Cooe)

Monterey, California 93943-5000 Monterey, California 93943-5000

8a N E Or NDNG SPONSOR 8bT 8: O M ' D v% 9 PROCuREMEV NS'R.;ENT DEN% ; CA--ON' N .SEP

ORGANiZATION (if apphcahle)

8, ADDRESS (City State, and ZIPCode) '0 S7'-_CE ' F.ND N "'.X BEPS

OPA C_4V 0, OE C T ~2O
L MEN' NO %C NO ACCESSON NO

1 TITLE (Include Security Classficaton) DESIGNING A VIRTUAL-MEMORY IMPLEMENTATION USING THE MOTOROLA

MC68010 16-BIT MICROPROCESSOR WITH MULTI-PROCESSOR CAPABILITY INTERFACED TO THE

2 PE
0
PNA_ A-THOR(S)

Sendek. David. M.
13a -Y;E O REPORT 3t, T.ME COVERED 4 DATE OF REPORT (Y'ar, Month Day) P7Mdster's Thesis R0, TOJune 1990 1 175

16 SUPP.EENAP NOTATOA. The views expressed in this thesis are those of the author and do

not reflect the official policy or position of the Department of Defense or the U.S.Cnvornmont_

7 COSA '! CODtS 18 S.B....T TERMS Continue on reverse if necessary and identify by block number)

ELD GrouP SS-GcO-P MC68010 Microprocessor, VMEbus, Virtual-Memory, Dual-port
Memory, Multi-processor

19 ABS .; ACT (Continue on reverse if necessary and identify by block number)
The primary purpose of this thesis is to explore and discuss the hardware design of

a bus-oriented microprocessor system. A bus-oriented microprocessor system permits it to
be expanded to a multi-processor system. Through the use of a bus controller and bus
arbiter, as discussed in this thesis, the necessary logic is in place to control bus
access by system users. Bus access may be initiated to share another sub-system's
resource, such as memory. To accommodate memory sharing between two systems, a dual-port
memory controller can be used to resolve memory access between the two systems. This
thesis discusses the design of a MC68010 microprocessor system integrated on the VMEbus
with dual-ported memory capability. Additional features of the MC68010 microprocessor
system include memory-management and interrupt control. The memory-management features
permit protected memory and virtual-memory to be implemented on the system, while an
interrupt handler is used to assist the MC68010 microprocessor in exception processing.

,' F DSTFR:'iON AvA.LA 'y 0) ABS'RA(21 ABSRACT SECJR 'V C, ASS C (A- O%

[JN.CL/SS~F 'ED iN I'MI ED SAME AS '" ' ,C LJSES T1nr 1 nQc i f'i -,
~ AM ' ES~SR. * ~ ~22b 'E. E Pr'ON (Incude Area tode(9;." .I)

Larry W. Abbott 71 3-48'-S93 EC/AT

DD Form 1473. JUN 86 Prev(,Lus edtions are obsolete SEE '' (A N F A ('N " Pi

S/N 1] (2-1,-0 1 3Uc lassi fied

i

Approved for public release; distribution is unlimited.

DESIGNING A VIRTUAL-MEMORY IMPLEMENTATION USING THE
MOTOROLA MC68010 16-BIT MICROPROCESSOR WITH

MULTI-PROCESSOR CAPABILITY INTERFACED TO THE VMEbus

by

David M. Sendek
Lieutenant, United States Navy

B.S., The College of Charleston, 1981

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

\NAVAL POSTGRADUATE SCHOOL
June 190O

Author: _ _ _ _ __ __
- David M. Sendek

Approved by:
/a W. Abbott, Thesis Advisor

Fred W. Terman, Second Reader

Jon'*D'Powers, Chairman, Department of
Electrical and Computer Engineering

ii

ABSTRACT

The primary purpose of this thesis is to explore and discuss

the hardware design of a bus-oriented microprocessor system. A

bus-oriented microprocessor system permits it to be expanded to a

multi-processor system. Through the use of a bus controller and

bus arbiter, as discussed in this thesis, the necessary logic is in

place to control bus access by system users. Bus access may be

initiated to share another sub-system's resource, such as memory.

To accommodate memory sharing between two systems, A dua]-nnrt

memory controller can be used to resolve memory access between the

two systems. This thesis discusses the design of a MC68010

microprocessor system integrated on the VMEbus with dual-ported

memory capability. Additional features of the MC68010

microprocessor system include memory-management and interrupt

control. The memory-management features permit protected memory

and virtual-memory to be implemented on the system, while an

interrupt handler is used to assist the MC68010 microprocessor in

exception processing.

Aooesslon For

NTIS GRA&I f
DTIC TAB
Unannounced E

Dl stribution/

Availability Codes

iAvail and/or
* Dist Speclal3.g l

TABLE OF CONTENTS

I. INTRODUCTION 1--------------------------------------1

II. DESIGN CONCEPTS 6-----------------------------------6

A. VMEbus SPECIFICATION 7--------------------------7

1. Background 7--------------------------------7

2. VMEbus Description 7------------------------7

3. Configurations 9----------------------------9

a. Slave-Only Application -------- ------- 9

b. Master-Only Application --------------- 10

c. Master-Slave Application -------------- i2

4. Arbitration Protocols --------------------- 14

B. MEMORY-MANAGEMENT ----------------------------- 18

1. Memory Protection 18-------------------------

2. Virtual-Memory ---------------------------- 19

3. Dual-ported Memory ------------------------ 22

III. SYSTEM OVERVIEW -- --------------------------------- 24

A. SYSTEM CONTROLLER CIRCUIT BOARD --------------- 24

1. Priority Bus Arbitration ------------------ 24

2. Manual Reset ------------------------------ 25

3. Interrupt Driver -------------------------- 26

B. MASTER CIRCUIT BOARD -------------------------- 26

1. Central Processor Unit -------------------- 26

2. Dual Universal Asynchronous Receiver/
Transmitter ------------------------------- 27

3. Erasable Programmable Read-Only Memory ---- 27

iv

4. Random Access Memory ---------------------- 28

5. Memory Management Unit -------------------- 28

6. Dual-port DRAM Controller ----------------- 28

7. VMEbus Controller ------------------------- 29

8. Interrupt Handler ------------------------- 29

IV. DESIGN IMPLEMENTATION - ---------------------------- 31

A. MINIMAL SYSTEM -------------------------------- 32

1. Memory Map -------------------------------- 32

2. Hardware Interface ------------------------ 35

3. Software Support--------------------------- 38

a. Exception Vector Table and Monitor/
Debugger Program ---------------------- 38

b. Monitor/Debugger Commands ------------- 38

c. Programmable Logic Device Programming - 40

B. FULLY INTEGRATED SYSTEM ----------------------- 41

1. Memory Map -------------------------------- 41

2. Master Circuit Board ---------------------- 44

a. Microprocessor ------------------------ 44

b. Halt and Reset Generation ------------- 45

c. Clock Generation----------------------- 46

d. Local Bus Address Decoding ------------ 46

e. Memory Management Unit ---------------- 46

f. Dual-port DRAM Controller ------------- 48

g. Dynamic Random Access Memory ---------- 50

h. EPROM and SRAM ------------------------ 51

i. Dual Serial Port ---------------------- 51

j. Interrupt Handler --------------------- 51

v

k. Data Transfer Acknowledge and Bus Error

Generation ---------------------------- 53

1. VMEbus Controller --------------------- 55

m. VMEbus Address Decoding --------------- 56

n. VMEbus Drivers ------------------------ 56

3. System Controller Circuit Board ----------- 57

a. Bus Arbiter --------------------------- 57

b. System Reset -------------------------- 57

c. VMEbus Drivers ------------------------ 57

V. RESULTS --- 59

VI. SUMMARY AND CONCLUSIONS --------------------------- 62

A. SUMMARY -- 62

1. Design Concepts --------------------------- 62

a. VMEbus Structure ---------------------- 62

b. Memory-Management --------------------- 62

c. Interrupt Control --------------------- 64

2. Design Implementation --------------------- 65

a. Hardware Configurations --------------- 65

b. Erasable Programmable Logic Devices --- 66

B. CONCLUSIONS ----------------------------------- 67

APPENDIX A (MC68010 16-BIT MICROPROCESSOR) -------------- 69

APPENDIX B (MINIMAL SYSTEM EXCEPTION VECTOR TABLE AND
MONITOR/DEBUGGER PROGRAM) -------------------- 77

APPENDIX C (MINIMAL SYSTEM DIAGRAMS) -------------------- 117

APPENDIX D (MINIMAL SYSTEM'S PROGRAMMABLE LOGIC
DEVICE SOURCE CODE) -------------------------- 126

APPENDIX E (SYSTEM DIAGRAMS) ---------------------------- 131

LIST OF REFERENCES -------------------------------------- 159

vi

BIBLIOGRAPHY -- 161

INITIAL DISTRIBUTION LIST ------------------------------- 162

vii

LIST OF TABLES

I. Minimal System Memory Map---------------------------- 33

Ii. System Memory Map------------------------------------ 42

III. Data Strobe Control of the Data Bus----------------- 71

IV. State and Address Space------------------------------ 74

viii

LIST OF FIGURES

1.1 Generic Multi-Processor System 5---------------------5

2.1 Slave-Only Subsystem 0-------------------------------10

2.2 Master-Only Subsystem ------------------------------ 11

2.3 Master-Slave Subsystem ----------------------------- 13

2.4 Daisy Chain Arbitration ---------------------------- 15

2.5 Parallel Arbitration ------------------------------- 16

2. 6 Virtual-Memory-Mapping ----------------------------- 20

2.7 Mapping Mechanism ---------------------------------- 21

2 .8 Dual-ported Memory --------------------------------- 22

3. 1 System Block Diagram ------- ----------------------- 25

4 .1 Minimal System ------------------------------------- 31

A. 1 MC68010 Signal Groups ------------------------------ 70

C.1 Minimal System MC68010 Microprocessor Circuitry ---- 118

C.2 Minimal System HALT* and RESET* Generation Circuitry 119

C.3 Minimal System Clock Generation Circuitry ---------- 120

C.4 Minimal System Address Decode Circuitry ------------ 121

C.5 Minimal System DTACK* and BERR* Generation Circuitry 122

C.6 Minimal System EPROM and SRAM Circuitry ------------ 123

C 7 Minimal System Interrupt Request and li"Lerrupt
Acknowledge Circuitry ------------------------------ 124

C.8 Minimal System Dual-port Receiver/Transmitter Serial
Port Circuitry ------------------------------------- 125

E.1 Master Circuit Board Functional Block Diagram ------ 132

E.2 System Controller Circuit Board Functional Block
Diagram -- 133

ix

E.3 MC68010 Microprocessor Circuitry ------------------- 134

E.4 H?.'- * and RESET* Generation Circuitry -------------- 135

E.5 Clock Generation Circuitry ------------------------- 136

E.6 Local Bus Address Decode Circuitry ----------------- 137

E.7 Memory Management Unit Circuitry (Page 1 of 2) ----- 138

E.8 Memory Management Unit Circuitry (Page 2 of 2) ----- 139

E.9 Dual-port DRAM Controller Circuitry (Page 1 of 3) 140

E.10 Dual-port DRAM Controller Circuitry (Page 2 of 3) 141

E.1l Dual-port DRAM Controller Circuitry (Page 3 of 3) 142

E.12 Dynamic Random Access Memory Circuitry
(Page 1 of 4) -------------------------------------- 143

E.13 Dynamic Random Access Memory Circuitry
(Page 2 of 4) -------------------------------------- 144

E.14 Dynamic Random Access Memory Circuitry
(Page 3 of 4) -------------------------------------- 145

E.15 Dynamic Random Access Memory Circuitry
(Page 4 of 4) -------------------------------------- 146

E.16 EPROM and SRAM Circuitry --------------------------- 147

E.17 Dual-port Asynchronous Receiver/Transmitter Serial
Port Circuitry ------------------------------------- 148

E.18 Interrupt Handler Circuitry ------------------------ 149

E.19 DTACK* and BERR* Generation Circuitry -------------- 150

E.20 VMEbus Controller Circuitry ------------------------ 151

E.21 VMEbus Address Decode Circuitry -------------------- 152

E.22 Master Circuit Board VMEbus Drivers Circuitry
(Page 1 of 3) -------------------------------------- 153

E.23 Master Circuit Board VMEbus Drivers Circuitry
(Page 2 of 3) -------------------------------------- 154

E.24 Master Circuit Board VMEbus Drivers Circuitry
(Page 3 of 3) -------------------------------------- 155

x

E.25 VMEbus Arbitration Circuitry-------------------------- 156

E.26 SYSRESET* Generation Circuitry----------------------- 157

E.27 System Controller VMEbus Drivers Circuitry-----------158

xi

I. INTRODUCTION

Economic pressure constantly forces computer design and

technology to produce more cost-effective system implementations.

Computers are made more cost-effective by lowering operating cost

through increased speed and power and by lowering design,

maintenance and upgrade costs through modular design techniques.

Architectural innovations can accelerate this process. Hence, new

innovations in system architecture are constantly sought after.

Architecture is used here to mean the structuring of the modules

which are organized into a computer system [Ref. l:p. 1]. These

modules include processors, memory and input/output (I/O) devices.

A uni-processor system consists of a single processor subsystem

and various supporting modules integrate1 to form a system. In

contrast, a multi-processor system is comprised of two or more

processor subsystems connected into one interrelated functional

system. In a multi-processor system, the interconnection of the

processor subsystems must be done in such a way as to maintain

control and manage the data flow of the entire system. This may be

accomplished through multi-ported memory, a serial link or as in

this thesis, by a system bus. A number of computer architectural

designs that accommodate growing needs are examined in this thesis.

Key architectural features of bus structures, memory-management and

interrupt control are described in this chapter.

1

Bus structures allow for the integration of peripherals, memory

and application-specific boards into one coherent system. Bus

structures permit the exchange of data and control signals between

circuit boards. This allows circuit boards to communicate with

each other and to share rasources. However, a strict adherence to

protocols must be maintained so the integrity of information and

control is preserved.

Memory-management features include memory protection and

virtual-memory. Special memory schemes have been used to protect

a system's integrity, to make more effective use of its physical

memory's address range and to permit multi-ported memory so that

the memory resource can be shared in a multi-processor system. A

memory protection scheme prevents users from inadvertently or

maliciously tampering with the operating system, its associated

memory-mapped hardware or other users. To accomplish this, a

portion of the processor's address range can be reserved for the

operating system, while the remaining portion is allocated to

system users. The operating system is protected because the user

is not permitted to cross into the operating system's memory.

The virtual-memory aspect of memory-management permits a

greater dynamic range and flexibility for user memory than actually

exists with the system's physical memory. Virtual-memory allows

each user to run programs as if he or she has full use of the

processor's address range, independent of the memory used by the

operating system or the other users. The user is unaware of how

the physical memory in the system is allocated. Therefore, memory

2

resources can be allocated automatically and respond to the dynamic

needs of the operating system and the users. In a system without

virtual-memory, programs must be executed in a specific memory

space and for large programs, the user must provide complex overlay

schemes to circumvent the fixed user memory allocation. It is

difficult for such a system to support several large programs

concurrently. In a virtual-memory system, the operating system

breaks up the user's program into segments called pages and moves

these pages as needed between physical memory and a secondary

storage device such as a hard disk. Thus, a virtual-memory system

can easily support several large programs concurrently as long as

each program only requires a modest amount of memory at any given

time.

Multi-ported memory, such as dual-ported memory, allows a

common memory resource to be shared between two or more processors

or peripheral devices. Thus, different processes or different

processors can communicate with each other via a multi-ported

memory mailbox equipped with an accompanying semaphore to maintain

access control and data integrity. Also, multi-porting provides a

communication link between tightly coupled systems where there is

a high degree of interaction.

Interrupts optimize the performance of a processor. An

interrupt is a control signal generated asynchronously by a device,

such as a serial port, requesting service from the processor. The

processor is free to process other tasks between interrupts from

devices requiring service [Ref. 2:pp. 220-223). When it is ready

3

to service an interrupting device, the processor saves its current

state and then performs the servicing tasks. When the servicing

tasks are completed, the saved state of the processor is restored

and the operation prior to the interrupt is resumed. Consequently,

the processing power of the processor is increased because the

overhead from polling peripheral devices for a service request is

eliminated.

In a general sense, a generic multi-processor system can be

viewed as illustrated in Figure 1.1. Various subsystems such as

data processing, storage and data communications are integrated

along a system bus to make up a complete system. Each subsystem is

comprised of memory, I/O and processor modules configured to

accommodate the unique requirements of the users of the multi-

processor system. A system controller acts as the arbiter for the

entire system. The system controller directs the information flow,

much as a traffic policeman directs traffic, between the various

subsystems along the system bus to ensure that the system is

properly coordinated. In order for each subsystem to have access

to the system bus, logic must be incorporated within each subsystem

to allow it to interface to the system bus.

The main thrust of this thesis is to explore the concepts of

bus structure, memory-management and interrupt control. These

concepts are addressed in a greater depth than would be possible in

a classroom environment.

4

SYSTEM DATA STORAGE
CONTROLLER COMMUNICATIONS

I I I
LOGIC LOGIC LOGIC

DEFINED DEFINED DEFINED
BY BY BY

THE BUS THE BUS THE BUS

SI

SYSTEM BUS

LOGIC LOGIC
DEFINED DEFINED

BY BY
THE BUS THE BUS

PROCESSOR PROCESSOR

Figure 1.1: Generic Multi-Processor System

5

II. DESIGN CONCEPTS

The concepts addressed in this thesis are limited to bus

structure organization, memory-management and interrupt control.

These features are commonly used in today's processor systems.

However, many options are available within each area. This thesis

design is a virtual-memory implementation of a MC68010-based

microprocessor system integrated on the VMEbus with dual-ported

memory capability.

Borrill [Ref. 3] highlights several advantages of the VMEbus.

The VMEbus, through its non-multiplexed address lines and data

lines, does not have multiplexing delays as do other buses, nor

does it have the transactional protocol overheads as do some other

buses. In addition, the non-multiplexed address lines will support

address pipelining. For interested readers, Borrill has made a

detailed comparison of the features and performance of the VMEbus,

Futurebus, Multibus II, Nubus and Fastbus (Ref. 3].

In addition to the advantages that Borrill highlights, the

VMEbus structure was selected because of the relative ease of

integrating Motorola and Signetics peripheral hardware devices.

These hardware devices include a memory management unit, VMEbus

controller, bus arbiter, interrupt handler hardware and dual-port

dynamic random access memory (DRUA_) controller.

The following discussion presents a broad overview of the

VMEbus structure and memory-management. This should facilitate

6

understanding of the concepts that are incorporated into the final

system (master circuit board) design.

A. VMEbus SPECIFICATION

1. Background

The VMEbus specification originated with Motorola's 68000

microprocessor products. The 68000 series was introduced to the

marketplace in the late 1970s, using the VERSAbus specification.

In the early 1980s, Motorola's European Microsystems group in

Munich, Germany, introduced the Eurocard version of the VERSAbus,

referred to as the VERSAbus-E specification. A joint agreement was

reached to adopt the VERSAbus-E as the baseline bus specification

for Motorola 68xxx devices with Mostek and Signetics as second-

source suppliers of the 68xxx family of devices. The VERSAbus-E

was renamed the VMEbus. The VMEbus specification [Ref. 4]

delineates the mechanical and electrical characteristics of the bus

and the protocols to interface devices on the VMEbus.

2. VMEbus Description

The VMEbus offers a versatile combination of timing

strategies and support features. It also offers several data

transfer sizes, several addressing modes and several arbitration

methods. The VMEbus is an asynchronous, non-multiplexed bus that

accommodates 8, 16 and 32-bit data transfers. [Ref. 5]

Asynchronous data transfers are flexible and do not impose

timing control signals. Completion signals from the asynchronous

devices ensure that adequate time is allowed for the data transfer.

In contrast, synchronous data transfers impose a timing constraint

7

on the data transfer which must accommodate the slowest device

attached to the bus.

A non-multiplexed bus is one that accommodates data

transfers and address transfers as separate signals on separate

lines of the bus. This contrasts with the multiplexing strategy

where data signals and address signals share the same set of lines.

As a simple description, during a write cycle, multiplexing address

signals are gated on one clock cycle and data signals are gated on

the same lines during a subsequent clock cycle. The non-

multiplexing strategy speeds up data transfer by eliminating the

second clock cycle.

The VMEbus can be used with 24 or 32 address lines

depending on the microprocessor's requirements and it is easily

adaptable to the entire family of Motorola 68xxx microprocessors

and peripherals.

The VMEbus is composed of four sub-buses that play unique

roles within the overall VMEbus functional structure. These

include the data transfer bus (DTB), the data transfer arbitration

bus, the priority interrupt bus and the utility bus. The VMEbus

functional specification describes how each sub-bus interacts and

the rules which govern the behavior of each sub-bus (Ref. 4:pp. 15-

194]. The DTB provides the pathways for the data signals, the

address signals and their associated control signals. The process

of resolving bus ownership takes place on the data transfer

arbitration bus. The priority interrupt bus is used to accommodate

processes which request servicing from another subsystem. An

8

interrupt stops normal bus activity until the interrupt is

serviced. The utilities bus is sometimes referred to as a

"miscellaneous functions bus". It includes a system reset line, an

alternating current (AC) power failure line, a system failure line

and a system clock [Ref. 2:p. 475].

The design in this thesis uses the VMEbus controller and

the interrupt handler hardware devices which are designed for use

with the VMEbus.

3. Configurations

In a multi-processor VMEbus-based system with a variety of

peripheral devices, each subsystem can fulfill one of three primary

roles. The subsystem can serve as a slave-only, as a master-only

or as a master-slave combination. A subsystem can also have the

role of direct memory access (DMA) in a master-slave configuration.

(To limit the size and complexity of this thesis, the DMA master-

slave configuration is not discussed.) These roles determine the

way the subsystem is integrated to the system bus.

a. Slave-Only Application

In the slave-only configuration, the subsystem is

slaved to the VMEbus. In other words, this subsystem is incapable

of making a request to obtain access and control of the VMEbus.

The slave subsystem is a device which other subsystems utilize.

Examples of slave subsystems include communication ports and stand

alone memory boards. If intelligence (logic) is added, the

subsystem can evolve into an input/output (I/O) channel or a mass

storage subsystem. Figure 2.1 shows the simplicity of a slave

9

subsystem interfaced to the VMEbus. The 74LS245s octal-bus

transctivers with 3-state outputs provide the drive capability for

transmitting signals onto the VMEbus and the receiver capability

for receiving signals from the VMEbus. If desired, the 74LS245s

can also be disabled to isolate the slave subsystem from the

VMEbus.

SLAVE SUBSYSTEM

SLAVE
DEVICE(S)

74LS245s

VMEbus

Figure 2.1: Slave-Only Subsystem

b. Master-Only Application

In the master-only configuration, the subsystem has the

ability to gain control of the VMEbus. A master-only subsystem has

an onboard central processor unit (CPU) with or without local slave

devices. It is interfaced to the VMEbus with a bus controller.

When the subsystem has gained control of the VMEbus, this subsystem

is said to be in a master role. Figure 2.2 gives a simplified

illustration of a VMEbus system with a master-only subsystem

10

attached to it. Comparison of Figures 2.1 and 2.2 shows the added

complexity required in a subsystem which can gain control of the

VMEbus. In addition, a system controller is included in Figure 2.2

to illustrate the added system complexity required to control bus

accesses.

SYSTEM CONTROLLER MASTER SUBSYSTEM

CPU LOCALI

-- DEVICES

BUS BUS
ARBITER CONTROLLER

74LS244s 74LS245s

VMEbus

Figure 2.2: Master-Only Subsystem

Given a request by the CPU, the bus controller

generates a bus request signal through an 74LS245 to the system

controller's bus arbiter. (The abilities of the 74LS245 were

described in the slave-only subsystem.) The bus arbiter receives

requests from subsystems on the VMEbus through the 74LS244 octal-

buffers and line drivers with 3-state outputs. The function of the

bus arbiter is to resolve prioritized requests from the subsystems

and to generate a bus grant signal through the 74LS244 to the

11

highest priority requesting subsystem. The subsystem's bus

controller maintains system integrity by ensuring that a bus grant

signal is received prior to permitting a data transfer. The

requesting subsystem, after receiving the bus grant signal, negates

its bus request and asserts the bus busy signal so that other

subsystems cannot gain control of the bus while the data exchange

is in process. Also, the bus busy signal informs the bus arbiter

that a data exchange is currently in progress and that the bus

arbiter can release the bus grant signal. The requesting device is

now the bus master. When the data exchange is complete, the

requesting device releases the bus busy signal to allow the bus

arbiter the opportunity to grant the bus to another subsystem.

If the bus is in use and a higher priority bus request

is asserted, the bus arbiter asserts the bus clear line. The bus

clear signal informs the current bus master that another subsystem

with a higher priority is requesting bus ownership. Each potential

bus master should accommodate either a "release when done" or a

"release on request" strategy to resolve pending higher priority

requests for bus access.

c. Master-Slave Application

A master-slave configuration combines the master-only

and slave-only capabilities into a single subsystem. As

illustrated in Figure 2.3, the CPU residing on the master-slave

subsystem has the ability to gain control of the VMEbus. The

system controller and bus arbiter perform the same roles as

described in the master-only subsystem.

12

Shared slave devices are onboard the master-slave

subsystem. These devices can be accessed by another subsystem when

it has control of the VMEbus (Fig. 2.3). The bus controller

isolates the shared slave devices from the CPU by putting the

74LS244s outputs into a high impedance state, whenever another

subsystem accesses the shared slave devices. When this happens,

the shared slave devices become a global asset to the system. The

74LS245s not only act as line drivers and receivers,

SYSTEM CONTROLLER MASTER-SLAVE SUBSYSTEM

i LOCAL

BUS BUS
ARBITER CONTROLLER 74LS244s

SHARED
SLAVE
DEVICES

74LS244s 74LS245s

VMEbus

Figure 2.3: Master-Slave Subsystem

they also prevent access from the VMEbus to shared slave devices

when the appropriate control signal is asserted by the bus

13

controller. Whenever the local master (in this case the CPU) is

accessing the shared slave devices, these devices become a local

asset. As discussed in the master-only application, the bus

controller preserves the VMEbus protocol.

4. Arbitration Protocols

Arbitration protocols ensure conflict-free access to the

system bus from all subsystems and are crucial in a multi-

processor environment [Ref. 6:p. 100] . An arbitration protocol

ensures that only one bus master has access to the bus at a time,

thus safeguarding the bus from collisions in which information is

transferred on the bus by multiple sources. The VMEbus supports

both serial and parallel arbitration schemes or a combination of

both methods. These two method are described in the following

paragraphs.

Daisy chaining is a method of arbitrating a shared

communication bus by serial prioritization. Figure 2.4 illustrates

daisy chain arbitration. If the bus is in use, any subsystem

requesting ownership must wait till the present bus master

relinquishes control of the bus. A subsystem requests access to

the bus by asserting the bus request (BR) signal. The bus arbiter

or other controlling device acknowledges the bus request by

asserting a bus grant (BG) signal to the bus grant input (BGIN) of

SUBSYSTEMI, the first subsystem in the daisy chain. If SUBSYSTEM1

is requesting the bus, it asserts the bus busy (BBSY) signal and it

continues to negate its bus grant output (BGOUT) signal.

SUBSYSTEM1 can now begin data transfer. If the bus request was

14

made by any subsystem other than SUBSYSTEM1, the BG signal is

passed by SUBSYSTEM1 to the next subsystem in the chain

(SUBSYSTEM2). The BGOUT signal from SUBSYSTEM1 becomes the BGIN

signal to the next subsystem in the chain (SUBSYSTEM2) . This

process is repeated until the highest priority requesting subsystem

receives the BGIN signal. SUBSYSTEM1 has a higher priority than

SUBSYSTEM2. The last subsystem in the chain (SUBSYSTEMn) has the

lowest priority.

BUS SUBSYSTEMI SUBSYSTEM2 SUBSYSTEMn

ARIE BGOUT BGOUT BGOUT

BGIN BGIN BGIN

BBSY

BR

DATA

Figure 2.4: Daisy Chain Arbitration

The BR and BBSY signals are wire-ORed (open collector-

active low), i.e., the logic is tied together at a wire connection.

Consequently, the BR signal will cause the BBSY signal to be

asserted once the BGIN signal is received through the daisy chain.

Parallel arbitration is a method of arbitrating a shared

communication bus by priority levels. An example of a three-level

parallel arbitration scheme is shown in Figure 2.5. In Figure 2.5,

15

bus request zero (BRO) has the lowest priority level, while bus

request two (BR2) has the highest priority level. The highest

priority subsystem with a pending request is granted access to the

bus. In this parallel arbitration scheme, the subsystems desiring

use of the bus make bus requests (BRx) through the bus arbiter.

The bus arbiter or other controlling device then sends out a bus

grant (BGx) onto the bus to the highest priority subsystem with a

pending bus request.

BUS SUBSYSTEM2 SUBSYSTEM1 SUBSYSTEM
ARB ITER

LBR2U
BG2
BRl
BGl
BRO
BGO

DATA DATA

Figure 2.5: Parallel Arbitration

The main advantage of the daisy chain arbitration scheme

over the parallel arbitration scheme is that subsystems can be

inserted sequentially, one after the other. Consequently, new

subsystems are easily added to the system.

The main advantage of the parallel arbitration scheme over

the daisy chain arbitration scheme is that arbitration can be

performed faster. Parallel arbitration does not propagate a bus

grant signal down a chain, but rather the bus grant signal is sent

16

directly to the highest priority subsystem requesting service.

However, the parallel arbitration scheme limits the number of

subsystems that the bus arbiter can accommodate.

Any fixed priority arbitration cannot ensure that the

subsystem with the lowest priority level will be serviced if higher

priority subsystems make frequent requests. The daisy chain

arbitration and parallel arbitration methods may need to be

modified or a controller may need to be incorporated to ensure each

subsystem can be serviced fairly.

The VMEbus uses a serial-parallel combination for bus

arbitration with only one bus arbiter. VMEbus arbitration uses a

scheme with four parallel priority levels similar to Figure 2.5.

Each priority level, however, can have subsystems daisy-chained as

illustrated in Figure 2.4. In other words, the bus arbiter grants

bus access 'Co a given level and then the daisy chain at that level

determines which subsystem actually gets the bus.

The VMEbus arbitration process includes the BBSY signal (as

shown in Figure 2.4) and the bus clear (BCLR) signal. The BBSY and

BCLR lines are added to the bus arbiter and all subsystems on the

VMEbus. The VMEbus BBSY signal is asserted by the subsystem which

is granted bus access. The BCLR output signal informs all

subsystems on all priority levels that a subsystem on a higher

priority level than the current bus master has requested access to

the VMEbus. As mentioned earlier, the requesting subsystem should

accommodate a "release when done" or "release on request" strategy

to resolve pending higher priority requests for bus access.

17

B. MEMORY-MANAGEMENT

Memory-management can employ a combination of methods to

organize the physical memory associated with a microprocessor or

system. These methods effectively free the programmer using the

system, from being concerned where the program code and program

data will reside in memory. This thesis addresses the memory-

management concepts of memory protection, virtual-memory and dual-

ported memory.

1. Memory Protection

One method used to organize the address range of a

microprocessor is to divide its address space into two or more

blocks. Each block of the address space can be designated for a

specific purpose, such as supervisor memory or user memory.

The MC68010 microprocessor has two modes of operation.

These modes are the user mode and the supervisor mode. The user

mode provides an instruction set for the programmer to accommodate

a majority of applications. The supervisor mode provides

additional instructions and privileges for use by the operating

system and other system-related software [Ref. 7:p. 1-1].

The user memory is the area designated for non-privileged

individuals to use. Such an individual executes programs in the

user mode. The address range for the user is normally limited

because it does not include the addresses associated with the

operating system and the memory-mapped peripherals. Additionally,

the user is restricted from executing privileged supervisor

instructions. In contrast, the operating system executes programs

18

in supervisor mode and can address supervisory memory and memory-

mapped peripherals as well as user memory. This segregation of the

supervisor and the user precludes the user from reconfiguring the

system, but still allows the user access to part of the physical

memory and to the computational power of the microprocessor.

Typically, the user must request the operating system to perform

operations which the user is not allowed to perform.

2. Virtual-Memory

Virtual-memory allows programs to be executed which require

more memory space than is physically resident. Therefore, the

maximum program size is not limited by the size of physical memory.

Originally, this method was designed to reduce and more effectively

use memory.

A virtual address is an address located within the address

space of the microprocessor. Consequently, with the MC68010

microprocessor, there exists 16 megabytes of virtual-memory. A

virtual-memory implementation groups the virtual addresses into

blocks called pages. Figure 2.6 shows such a grouping with zero

through N pages of virtual-memory but with only enough physical

memory to accommodate two virtual pages in physical memory. In

Figure 2.6, virtual PAGE 1 and virtual PAGE N are mapped into

separate physical pages.

When the CPU generates a virtual address, the virtual

address is translated into a physical address. The address

translation process includes fairly sophisticated memory protection

so that tasks cannot interfere with each other or access resources

19

not allocated to them. Figure 2.7 illustrates a simplified memory-

mapping mechanism. The high order virtual address bits are

referred to as a virtual page number. The virtual page number

references a location of the translation table. The translation

table has as its contents a physical page number which references

the starting location of the physical memory's page address. The

low order virtual address bits give the relative address offset of

the desired address within the physical page selected.

PAGE 0

PAGE 1 PHYSICAL ADDRESS

PAGE N-1 <

PAGE N

VIRTUAL ADDRESS

Figure 2.6: Virtual-Memory-Mapping

Generally, each processing task has its own translation

table similar to Figure 2.7. These tables are switched whenever

the active task changes which avoids interference between

processing tasks.

20

VIRTUAL ADDRESS

HIGH ORDER BITS LOW ORDER BITS
(VIRTUAL PAGE NUMBER)

TRANSLATION TABLE
ADDRESS

PAGE 0 WITHIN
PHYSICAL
PAGE

PAGE N - 1

PAGE
N

PAGE ADDRESS
SELECTED

PHYSICAL ADDRESS

Figure 2.7: Mapping Mechanism

When the CPU generates a virtual address in a page that is

not present in physical memory, for instance PAGE 2 as in Figure

2.7, the memory manager senses that fact and generates a page

fault. The page fault triggers a chain of events which ultimately

retrieves the desired page of the program from secondary storage

and places it in physical memory. The instruction which caused the

page fault is then continued or restarted. [Ref. 2:pp. 326-330]

21

3. Dual-ported Memory

Dual-ported memory permits two nearly simultaneous accesses

to the memory resource without conflict. Figure 2.8 illustrates a

typical configuration of a dual-port memory device. One approach

to arbitrating concurrent memory requests in a dual-ported random

access memory (RAM) is to sample one request line on the rising

clock edge and the other on the falling clock edge. A PORT 1

REQUEST is assumed to be sampled on the rising clock edge.

PORT 1 PORT 2

ADDRESS BUS - 74LS244s 74LS244s - ADDRESS BUS

DATA BUS - 74LS245s 74LS245s - DATA BUS

CONTROL BUS - 74LS244s 74LS244s - CONTROL BUS

PORT 1 GRANT PORT 2 GRANT

PORT 1 REQUEST - DUAL-PORT PORT 2 REQUEST
M=O:RY DEVICE

CLOCK -

ADDRESS DATA
BUS BUS

MEMORY

Figure 2.8: Dual-ported Memory

If a PORT 1 REQUEST is asserted, a PORT 1 GRANT is generated which

gates the PORT 1 address, data and control lines through the left-

hand 74LS244s and 74LS245s in Figure 2.8. The address and control

signals are sent to the dual-port memory device and the data

22

signals are sent directly to memory. The dual-port memory device

then gates the address lines to memory. While the PORT 1 GRANT is

active, the PORT 2 GRANT cannot be asserted. PORT 2 is thus locked

out from gaining access to memory. In contrast, if a PORT 2

REQUEST is asserted and PORT 1 is inactive, a PORT 2 GRANT is

generated. This causes PORT 2 to gate the control and address

lines through the other 74LS244s to the dual-port memory device and

to gate the data lines directly to memory via the 74LS245s.

In the event that both request lines are active, a PORT 1

GRANT will be generated on the rising clock edge or a PORT 2 GRANT

will be generated on the falling clock edge. The other request is

locked out until the request line of the recognized port is no

longer asserted. The other port will then gain access on the

appropriate clock edge.

23

III. SYSTEM OVERVIEW

This thesis seeks to design a system that satisfies the design

requirements for a system that can be expanded to a multi-processor

system. Additionally, the subsystem design is interrupt-controlled

with both virtual-memory and dual-ported memory support. This

chapter gives a system perspective on the hardware associated with

the system controller circuit board and master circuit board (Fig.

3.1) integrated to the VMEbus.

A. SYSTEM CONTROLLER CIRCUIT BOARD

The VMEbus specification describes the system controller as a

board which resides in slot one of the VMEbus back plane (Ref. 4:

pp. 5] . The system controller circuit board design provides

priority bus access arbitration, a manual system reset and a

interrupt acknowledge (IACK*) daisy chain driver. The system

controller subsystem uses line drivers to buffer the arbitration

signals and IACK* signal on the VMEbus.

1. Priority Bus Arbitration

The Motorola MC68452 bus arbitration module (BAM)

peripheral device [Ref. 8] was selected to perform the VMEbus

access arbitration. The BAM is configured to accommodate four bus

request (BRx*) inputs and four bus grant (BGx*) outputs. After

parallel arbitration, a bus grant signal is generated by the BAM at

the level of the highest priority bus request. The bus grant

signal is then daisy chained down on the level of the highest

24

priority bus request. This VMEbus arbitration method combines the

advantages of both the daisy chain arbitration and parallel

arbitration methods discussed in Chapter II.

DEVELOPMENT
SYSTEM

TERMINAL
(CRT and KEYBOARD)II

DUART

CPU DRAM

I AMMMU EPROM

DUAL-PORT DRAM SRAM
IACK* DAISY CONTROLLER
CHAIN DRIVER

VMEbus INTERRUPT
CONTROLLER HANDLER

SYSTEM CONTROLLER MASTER
CIRCUIT BOARD CIRCUIT BOARD

VMEbus

Figure 3.1: System Block Diagram

2. Manual Reset

The manual system reset provides a system-wide master reset

of all devices within all subsystems. Resetting the system re-

initializes various devices within it. This is necessary in order

to restart the system after system failure.

25

3. Interrupt Driver

The VMEbus structure provides the IACK* signal daisy chain.

However, a driver is provided on the system controller circuit

board to drive the IACK* signal onto the VMEbus.

B. MASTER CIRCUIT BOARD

The master circuit board is the primary design focus of this

thesis. As shown in Figure 3.1, the master circuit board subsystem

is composed of nine functional blocks. These functional blocks are

the central processor unit (CPU), dual universal asynchronous

receiver/transmitter (DUART), dynamic random access memory (DRAM),

static random access memory (SRAM), erasable programmable read-only

memory (EPROM), memory management unit (MMU), dual-port DRAM

controller, VMEbus controller and interrupt handler. The master

circuit board is configured in a master-only role as discussed in

Chapter II.

1. Central Processor Unit

The Motorola MC68010, 16-bit CPU, was selected to be the

processing element because it has the necessary features to support

virtual-memory but lacks the addz cj::ty of a 32-bit

architecture. It also affords easier wire-wrap assembly than the

other Motorola CPUs supporting virtual-memory because wire-wrap is

better supported for a dual in-line package (DIP) and there are

fewer data and address signals. The signals and programming

capabilities of the MC68010 microprocessor are discussed in further

detail in Appendix A.

26

2. Dual Universal Asynchronous Receiver/Transmitter

Two asynchronous serial (RS-232) ports are implemented with

the Motorola MC68681 DUART. One serial port is configured to drive

a terminal, while the second serial port is used to down-load files

from an IBM XT/AT compatible computer. The first serial port is

used to permit a human interface to the system. The intent of the

second serial port is to provide the ability to develop software on

an IBM XT/AT compatible computer with a cross assembler and then to

down-load the software through the second serial port to the master

circuit board's random access memory (RAM) for testing, debugging

and execution.

3. Erasable Programmable Read-Only Memory

The EPROM in this thesis design, contains the exception

vector table and the monitor/debugger program. The exception

vector table contains the addresses of the routines to be executed

as a result of an interrupt or other exception. The monitor

program configures the subsystem when it is powered up and handles

communications with the terminal for interaction between the

microprocessor and the user. It also provides debugging commands

and coordinates the previously mentioned down-loading of files.

Sixty-four kilobytes of EPROM are provided in the master circuit

board.

Once an operating system is developed, it would not be

desirable to freeze the interrupt part of the exception vector

table into read-only memory (ROM). It should be noted that the

27

design of an operating system to take advantage of the system's

hardware features is beyond the scope of this thesis.

4. Random Access Memory

Sixteen kilobytes of SRAM and one megabyte of DRAM are

provided on the master circuit board.

5. Memory Management Unit

The use of the Motorola MC68451 MMU affords several

advantages to the microprocessor system. The MMU provides the

advantages of virtual-memory and a sophisticated memory protection

scheme (both previously discussed in Chapters I and II) . The

MC68451 provides the capability to:

- Translate logical addresses to physical addresses.

- Provide segment descriptors to implement memory protection.

- Detect page faults and other situations requiring operating
system intervention.

- Aid the operating system in managing the virtual-memory system
efficiently (by use of the segment status registers).

6. Dual-port DRAM Controller

The Signetics 74F765 dual-port DRAM controller provides

access to the DRAM by either a local bus master or a global bus

master. If DRAM is accessed by the local bus master, i.e., the CPU

on the master circuit board subsystem, it becomes a local asset.

It is not desirable for the local CPU to access DRAM via the VMEbus

because long access times would be the result. If DRAM is accessed

by a global bus master, i.e., another subsystem controlling the

VMEbus, it becomes a global asset. The ability to access DRAM

locally or globally is desirable for a system that includes

28

subsystems that interact closely with one another. In addition,

the dual-port DRAM controller provides refresh cycles to the

dynamic memory integrated circuit chips.

The global memory accesses in this master circuit board

subsystem design, use physical addresses to permit the

implementation of mailboxes with attached semaphores as discussed

in Chapter I. An operating system needs to lock the mailbox page

in physical memory at a specified physical address.

7. VMEbus Controller

The Signetics SCB68172 VMEbus controller preserves the

VMEbus data transfer and VMEbus access protocols. The VMEbus

controller and the MC68010 CPU are configured in a master-only role

as illustrated in Figure 2.2 and discussed in Chapter II. The

VMEbus controller provides the necessary logic to interface the

master circuit board subsystem to the VMEbus.

8. Interrupt Handler

The Signetics SCB68155 interrupt handler is used in the

master subsystem design to assist the CPU with interrupt

processing. The interrupt handler receives global and local

interrupt requests and arbitrates their priority. The arbitration

priority is non-maskable interrupts, first, then local interrupts

and finally global interrupts.

The interrupt handler acts as a mediator between the CPU

and the interrupting device or between the CPU and the interrupting

subsystem. Once a local interrupt is generated by the DUART or

MMU, control signals are sent between the interrupting device and

29

the interrupt handler as well as between the interrupt handler and

the CPU. The DUART or the MMU responds with a pre-programmed

status/ID vector as an interrupt response.

A subsystem can request an interrupt at any time by

asserting the appropriate interrupt request line. On detecting an

interrupt request, the interrupt handler sends a control signal to

the VMEbus controller to request the VMEbus during the interrupt

acknowledge cycle. The subsystem making the request then sends the

status/ID vector to the master circuit board's CPU.

30

IV. DESIGN IMPLEMENTATION

This chapter discusses the design of the minimal system and of

the fully integrated system (master circuit board and system

controller circuit board). The minimal system provides the

foundation of core resources necessary to construct a computer

system. The fully integrated system design can be implemented by

integrating additional resources to the minimal system. For

comparison, the fully integrated system is illustrated in Figure

3.1, while the minimal system is illustrated in Figure 4.1.

DEVELOPMENT
SYSTEM

TERMINAL
(CRT and KEYBOARD)

DUART

DRAM

EPROM

SRAM

MINIMAL SYSTEM

Figure 4.1: Minimal System

31

A. MINIMAL SYSTEM

Currently at the Naval Postgraduate School (NPS), there exists

no computer-aided design (CAD) tools which can simulate the fully

integrated system designed in this thesis. This is in part due to

the inability of the CAD vendors to keep pace with the profusion

of extremely complex very large scale integrated (VLSI) circuit

chips. The CAD systems at NPS, Valid Inc.'s SCALD and Futurenet's

CAD50, do not support all the peripheral devices incorporated

within this thesis. Consequently, a step-by-step progression was

made to fully integrate the system. The first stage, referred to

as the minimal system, includes the core resources which form the

foundation to which more complex devices can be added. When more

complexity is added to the minimal system, operational testing can

be conducted to insure proper integration of the new devices into

the system.

1. Memory Map

Memory-mapping determines how the microprocessor accesses

physical memory and peripheral devices. The Motorola MC68010

microprocessor has 23 address lines, Al through A23. The upper

data strobe (UDS*) and lower data strobe (LDS*) lines collectively

determine address bit AO. Effectively, there are 24 address lines

giving an virtual address range of 16 megabytes. Physical memory

elements such as static random access memory (SRAM), dynamic random

access memory (DRAM) and read-only memory (ROM) are mapped into

this 16 megabyte range as are the memory-mapped peripherals.

32

The memory-mapped peripheral devices have multiple internal

registers. The high order physical address bits are used to select

a particular peripheral device. The low order physical address

bits are decoded inside the peripheral device and subsequently

select one of the internal registers. These registers are

programmed to configure the device to meet desired performance

specifications.

Table I displays the specific locations of the minimal

system's memory-mapped devices and the physical memory components

within the address space of the MC68010 central processor unit

(CPU).

TABLE I: MINIMAL SYSTEM MEMORY MAP

PHYSICAL
ADDRESS
$000000

64K BYTES OF EPROM
$OOFFFF
$010000

16K BYTES OF STATIC RAM
$013FFF
$014000

NOT USED
$7F6FFF
$7F7000

MC68681 DUART
$7F7FFF
$7F8000

NOT USED
$FFFFFF

The 64k bytes of erasable programmable read-only memory

(EPROM) contain the exception vector table and the monitor/debugger

program. Appendix B gives the source code listing of the exception

33

vector table and the monitor/debugger program. The 2500AD MC68010

cross assembler [Ref. 9), running on an IBM XT/AT compatible

computer, was used to cross assemble the monitor/debugger source

code into a Motorola S-record format (Ref. 10:pp. A-i - A-41. In

order to program the S-record code into the EPROM, a Data I/O

System 29 Universal Programmer was configured to accept Motorola S-

records. The S-record file was then sent from the IBM XT/AT to the

Data I/O System 29 via an RS-232 interface. Finally, the EPROM

programming process was initiated on the Data I/O System 29.

The 16K bytes of SRAM are used to test development

software. Files can be down-loaded to the SRAM for debugging.

SRAM is used in the minimal system design instead of DRAM to avoid

the additional logic necessary to generate refresh cycles for the

DRAM.

The MC68681 dual universal asynchronous receiver/

transmitter (DUART) is a communications peripheral device that can

accommodate two independent full-duplex (receiver/transmitter)

ports. The operating mode and data format of each port can be

programmed independently. One port of the DUART is configured by

the monitor/debugger program to accommodate the down-loading of

files from an IBM XT/AT compatible computer. The other port of the

DUART is configured to communicate with the terminal. The memory

map (Table I) delineates a physical address range of $7F7000

through $7F7FFF for the DUART. A chip select signal will be

generated for the DUART when a physical address is in the range

$7F7000 through $7F7FFF. The physical addresses in the range

34

$7F7010 through $7F7FFF are multiple maps for the DUART. Multiple

maps provide valid addresses to chip select the DUART. They also

permit address decoding logic to be simplified. However, to avoid

ambiguity, only the physical addresses $7F7000 through $7F700F are

used to address the DUART.

2. Hardware Interface

Appendix C illustrates the circuitry involved in the

minimal system. Figures C.1 through C.8 illustrate the minimum

system in its entirety.

Figure C.1 illustrates the MC68010 microprocessor used in

the minimal system design.

Figure C.2 illustrates the HALT* and RESET* generation

circuitry. The NE555 timer provides an automatic system reset when

the system is powered up. There is also a manual system reset

switch (push button). Resetting the system initializes the

internal circuitry of the CPU and DUART. A two-input OR gate in

the reset circuitry has one input grounded, so it acts as an

unneeded buffer. However, in the fully integrated system

(discussed later in this chapter), this input is tied to the VMEbus

system reset (SYSRESET*) line. This permits a system-wide reset to

the master circuit board illustrated in Figure 3.1.

Figure C.3 illustrates the clock generation circuitry. The

8 MHz CPU clock signal is produced by using a 74LS161 binary

counter to divide a 16 MHz signal from a crystal controlled

oscillator. A 4 MHz signal from the 74LS161 provides the clock

35

input for the shift register which is used to help generate the

data transfer acknowledge (DTACK*) and bus error (BERR*) signals.

Erasable programmable logic devices (EPLDs), specifically

Altera EP310s, were used to reduce the chip count in the minimal

system. EPLDs were used for address decoding, generating DTACK and

BERR signals, performing interrupt control and generating SRAM

write enable and RAM and ROM output enables.

Figure C.4 shows the EPLD implementation for the minimal

system address decoder. The minimal system address decoder

implements the memory map of Table I. Listing D.1 in Appendix D

presents the Abel software program for the address decoder. Abel

software will be discussed in the next section.

Figure C.5 shows the logic of the circuitry which generates

the DTACK* and BERR* signals to the CPU. The circuitry prior to

the 74LS05 open collector inverters, is implemented by an EPLD.

The DTACK and BERR signals are passed through the 74LS05s to give

the open collector outputs and the proper assertion levels (DTACK*

and BERR*). In the event that the MC68010 microprocessor tries to

address a location not supported by the design, a bus error (BERR*)

time-out signal is generated after two microseconds. The BERR*

signal causes the CPU to begin bus error exception processing.

This invokes the routine whose address is in the longword at

address $000008. The circuit which generates the delay time for

BERR* is referred as a watchdog timer. Listing D.2 in Appendix D

presents the Abel description of the DTACK and BERR signals.

36

The circuitry for EPROM and SRAM is illustrated in Figure

C.6. Since random access memory (RAM) and ROM cannot generate a

DTACK* signal to the CPU, additional circuitry is required. The

DTACK* signal informs the CPU that the data transfer has been

completed by the slave device. The 74LS164 shift register

generates the data transfer delay times for the RAM and the ROM and

the bus time-out delay for a bus error condition (Fig. C.5) . A 250

nanosecond delay is provided to ensure an adequate time for data

transfer between the CPU and the RAM. A 500 nanosecond delay is

provided for data transfer between the CPU and the ROM. These

transfer times accommodate the data propagation delay, the system

address decoding delay and the internal address decoding delay of

the RAM and the ROM. The logic for the output enable and the write

enable signals are implemented on an EPLD. Listing D.3 in Appendix

D presents the Abel description of the SRAM write enable and RAM

and ROM output enable signals.

Figure C.7 shows the logic for the interrupt priority level

(IPLO* through IPL2*) and the interrupt acknowledge (IACK681*)

signal. A level one interrupt request (HHL) is sent to the MC68010

CPU when the MC68681 DUART asserts its interrupt request output

(low). An IACK681* signal is sent to the DUART when a level one

interrupt acknowledge is output by the CPU. The logic for the

IACK681* and the IPLO* through IPL2* signals are actually

implemented with an EPLD. Listing D.4 in Appendix D presents the

Abel description of the IACK681* and IPLO* through IPL2* signals.

37

Figure C.8 illustrates the circuitry which supports the

dual serial ports. As mentioned earlier, one port (Port A) of the

DUART is configured to communicate with the terminal. The other

port (Port B) is configured by the monitor/debugger program to

accommodate the down-loading of files from an IBM XT/AT compatible

computer.

3. Software Support

a. Exception Vector Table and Monitor/Debugger Program

The exception vector table contains the addresses of

routines to be executed when an exception (trap or interrupt) is

detected. The monitor program sets up communications with the

terminal, provides debugging commands as well as a down-load

command. The exception vector table and the monitor/debugger

program (Appendix B) reside in the EPROM starting at physical

address $000000. The exception vector table occupies physical

addresses $000000 through $0003FF [Ref. 7:p. 4-5] . Physical

addresses $000400 through $001FFF are not used and the

monitor/debugger program begins at the arbitrarily selected

physical address $002000.

The monitor/debugger program was developed on the

Motorola Educational Computer Board (ECB) [Ref. 101. After a

system reset, the microprocessor's program counter is initially

loaded with address $002000 to start the monitor/debugger program.

b. Monitor/Debugger Commands

The monitor/debugger program provides a user with six

commands. These commands are not intended to be comprehensive, but

38

they do provide assistance in program development and debugging.

The user commands are as follows:

- GO address <,break point address>
- MM start address <,end address>
- MD start address <,end address>
- RCH {Axx, Dxx, PC, US, SP, SR}
- REG
- LOAD

where <...> implies optional
{.. .} implies select one entry

The GO command is used to execute a program that

resides in the system's memory. The program can be placed in

memory by using the memory modify command or by down-loading a

program from an IBM XT/AT compatible computer. The address in the

GO command gives the location where program execution will begin.

An optional break point address can be added within the GO command.

The break point will stop program execution at the address

specified. This is particularly useful if one desires to know the

state of the machine, i.e., memory contents or register contents,

at that point.

The memory modify command (MM) is used to modify the

contents of an address or, if desired, a range of addresses. This

command can modify code or data residing in RAM.

The memory display command (MD) is used to display the

contents of an address or a range of addresses, if desired.

The change register command (RCH) is used to modify the

contents of an address register (Axx), a data register (Dxx), the

program counter (PC), the user stack pointer (US), the system stack

39

pointer (SP) or the status register (SR). One of these options

must be specified with the RCH command.

The display register command (REG) displays the

contents of the address registers, data registers, program counter,

user stack pointer, system stack pointer and status register. This

information gives the state of the MC68010. This command is

particularly useful when a breakpoint is reached in the debugging

process.

The down-load command (LOAD) permits the minimal system

to receive software that was developed on an IBM XT/AT compatible

computer. After code has been assembled and linked using software

such as the 2500AD MC68010 cross assembler, it can be down-loaded

to the absolute address (or addresses) specified during the linking

process.

c. Programmable Logic Device Programming

As already mentioned, EPLDs are used to reduce the chip

count on the printed circuit board. The Data I/O Abel [Ref. 11]

program was used to compile a high-level language representation of

desired digital logic. The output of Abel is a joint electron

device engineering council (JEDEC) standard file for programming

the EPLDs. This file is then down-loaded to the Data I/O System 29

Universal Programmer to program the EPLDs. Appendix D shows the

Abel source code that generates the logic implementations discussed

in this chapter and illustrated in Figures C.4, C.5, C.6 and C.7.

40

B. FULLY INTEGRATED SYSTEM

The intent of this thesis is to design a hardware system so

that at some future date an operating system could be developed to

control its hardware facilities. These facilities accommodate

virtual-memory, protected memory, serial communications, interrupt

control and multi-processor abilities interfaced to the VMEbus. A

hard disk controlled by a direct memory access (DMA) controller

would be needed to implement the paging function required to

support virtual-memory. The operating system would use the memory

management unit (MMU) to implement user/supervisor memory

allocations (protected memory) and virtual-memory. Considerations

for a future operating system will be discussed throughout the

following sections.

The fully integrated system is composed of the master circuit

board subsystem and the system controller subsystem (Fig. 3.1).

Each subsystem is decomposed into functional units. The functional

units for the master circuit board subsystem are shown in Figure

E.1 and the functional units for the system controller subsystem

are shown in Figure E.2. Each of the functional units for the

subsystems is discussed in the following sections.

1. Memory Map

The memory map (Table II) of the master circuit board's

physical address space contains the memory-mapped peripheral

devices and the physical memory. This mapping is an enhanced

version of the minimal system's physical memory map (Table I).

41

TABLE II: SYSTEM MEMORY MAP

PHYSICAL
ADDRESS
$000000

64K BYTES OF EPROM
$OOFFFF
$010000

16K BYTES OF SRAM
$013FFF
$014000

OFF-BOARD RESOURCE
$7F4FFF
$7F5000

MC68451 MMU
$7F5FFF
$7F6000

SCB68155 INTERRUPT HANDLER
$7F6FFF
$7F7000

MC68681 DUART
$7F7FFF
$7F8000

OFF-BOARD RESOURCE
$7FFFFF
$800000

ONE MEGABYTE OF DRAM
$8FFFFF
$900000

OFF-BOARD RESOURCE
$FFFFFF

The memory map allocates 64K bytes of ROM to include the

interrupt vector table, monitor/debugger program and operating

system. The interrupt vector table and monitor/debugger program

perform the same roles as described in the minimal system.

However, an operating system would have to be incorporated to

handle the enormous code requirements to manage user/supervisor

memory allocations (protected memory), page faults (for virtual-

memory) and an operating system kernel. The intent is for the core

of the operating system to reside in ROM, since a mass storage

42

device is not incorporated in this subsystem design. A design of

a multi-disk control module for a VMEbus-based system was presented

in an earlier thesis [Ref. 12].

The 16k bytes of SRAM retains upward compatibility with the

minimal system. The SRAM will be used until the DRAM can be

incorporated into the master circuit board subsystem. However, if

an operating system requires more that the 64K byte size of ROM,

which is a likely possibility, any range spanning the physical

addresses $010000 through $7F4FFF could be allocated for more ROM

or RAM. This would require changing the address decoding logic and

adding ,%OM or RAM chips to the master circuit board subsystem

design.

The MC68451 MMU [Ref. 13] is memory-mapped because its

internal registers must be programmed for the desired virtual-

memory configuration and address translation. By using the

MC68010's function codes (see Appendix A) along with the desired

address translation scheme, an operating system can separate the

supervisor's address space from the user's address space, thus

implementing a memory protection scheme.

The SCB68155 interrupt handler hardware [Ref. 14:pp. 2-369

- 2-3851 is memory-mapped so that it can be initialized for the

desired mode of operation. The interrupt handler can accommodate

local interrupts from the DUART and the MMU as well as interrupts

from global bus masters.

The MC68681 DUART [Ref. 15] provides the interface to two

RS-232 serial links. One link is used for communications with the

43

terminal, while the other link is used for communications with an

IBM XT/AT computer. The DUART is configured to provide the desired

serial communications characteristics such as baud rate, parity and

stop bitE.

One megabyte of DRAM is provided for the master circuit

board subsystem. The operating system would manage this resource

by assigning virtual pages to physical memory. It is intended that

a portion of the DRAM's physical address range map to the same

virtual address range. This will permit global memory access to

pass semaphores and messages between the master circuit board and

other subsystems, as discussed in Chapter I.

It is important L- note that if an address falls into the

ranges of $014000 through $7F4FFF, $7F8000 through $7FFFFF or

$900000 through $FFFFFF, the CPU is accessing an off-board device.

2. Master Circuit Board

a. Microprocessor

The MC68010 CPU (Fig. E.3) is the processing element of

the master circuit board subsystem. The signals of the CPU can be

organized into functional groups (see Appendix A) which describe

the role of the signals within the subsystem.

The CPU has two bi-directional open collector pins,

HALT* and RESET*, which require pull-up resistors to ensure that

the signals are not asserted until the appropriate events occur.

The only bus master on the subsystem is the MC68010.

Hence, the bus request (BR*) and the bus grant acknowledge (BGACK*)

44

signals require a pull-up resistor to ensure that the CPU does not

perform bus arbitration.

No Motorola M6800 peripherals are used in the master

circuit board design. Hence, the valid peripheral address (VPA*)

signal is tied to a logical one.

The circuitry to generate the DTACK* and BERR* signals

(discussed later) are open collector signals. Hence, pull-up

resistors are used to ensure that these signals are not

inappropriately asserted.

b. Halt and Reset Generation

The HALT* and RESET* generation circuitry (Fig.

E.4) provides manual and automatic power-on subsystem reset to the

CPU and peripheral devices. The NE555 timer provides an automatic

power-on reset to the subsystem. The NE555 timer is configured as

a one-shot to generate the power-on reset signal. This automatic

reset occurs within the first few tenths of a second after the

subsystem is powered on. An external system reset can also reset

the subsystem. This system reset is generated from the system

controller subsystem via the VMEbus. A debounced switch is used to

cause a manual reset of the subsystem.

A reset causes the CPU to read into the SP register and

PC register the longword (32-bits) contents of physical addresses

$000000 and $000004, respectively. Recall that ROM begins at

physical address $000000. Consequently, the two longwords beginning

at physical address $000000 are retrieved from non-volatile memory.

The initial PC vector at physical address $000004 contains the

45

value $002000, so when this value is read into the PC, execution of

the monitor/debugger program is started.

c. Clock Generation

The clock generation circuitry (Fig. E.5) provides

clocking signals to the CPU and to the peripheral devices. A

74LS161 binary counter is used to divide the 16 MHz signal from the

crystal oscillator into rates that accommodate the CPU, the MMU,

the dual-port DRAM controller and the interrupt handler hardware.

A 4 MHz signal is sent to additional circuitry to help generate the

DTACK* and BERR* signals.

d. Local Bus Address Decoding

Once a virtual address is mapped to a physical address,

the local bus address decode circuitry (Fig. E.6) is used to

generate chip select signals for RAM, ROM or a peripheral device

based upon the system memory map (Table II). Two Altera EP310

EPLDs [Ref. 16:pp. 2-57 - 2-62] were used in the design to be

programmed via Abel software [Ref. 11] . As mentioned earlier, Abel

is software developed by Data I/O Corporation that permits a high-

level language description of the logic function to be programmed

on a EPLD, programmable array logic (PAL) or similar logic device.

e. Memory Management Unit

The MMU circuitry (Figs. E.7 and E.8) provides the

subsystem with virtual-memory support and memory protection. The

address translation from a virtual-address-to-physical-address is

done by this device. Once the MC68451 MMU has been configured by

the operating system, the address translation is performed

46

internally within the MMU and is thus hidden from the subsystem

unless a page fault occurs. The internal details of the MMU are

given in its reference manual [Ref. 13].

A page fault (FAULT*) signal is generated if the MMU

detects a write violation or if address translation cannot be

performed successfully. The write violation occurs if an attempt

is made to write to a write-protected portion of physical memory.

If address translation cannot be performed, this denotes to the

operating system that a new memory page may need to be brought into

memory from a hard disk or that there is a system error. The

operating system configures the MMU to write-protect memory

segments and to implement virtual-memory-mapping by the MMU.

The circuitry to inhibit virtual-address-to-physical-

address translation during an interrupt cycle is illustrated in

Figure E.7. The mapped address strobe (MAS*) and ALL input signals

to the MMU are generated during an interrupt acknowledge cycle.

The physical data strobe generation circuitry (Fig.

E.8) is used to generate the physical upper data strobe (PUDS*) and

the physical lower data strobe (PLDS*) signals. The PUDS* and

PLDS* signals are generated during normal virtual-address-to-

physical-address translation. Normal address translation is the

mapping of a virtual address to a physical address without a page

fault occurring. The physical data strobes will not be generated

if there is a write cycle for a write-protected segment. This is

accomplished by the write inhibit (WIN*) signal generated by the

MMU.

47

The physical address strobe circuitry (Fig. E.8)

generates a physical address strobe (PAS*) signal to denote that

the address translation has taken place and the physical address is

valid and stable.

f. Dual-port DRAM Controller

The dual-port DRAM controller circuitry (Figs. E.9,

E.10 and E.11) provides two paths into RAM [Ref. 17]. The local

bus master (the CPU) can be ported to the RAM or a global bus

master can be ported to the RAM via the VMEbus. Two paths into RAM

are especially useful because processor subsystems can pass

information-carrying semaphores. Also, The 74F764 dual-port DRAM

controller provides DRAM refresh.

The 3-state capability of the 74LS244s (Fig. E.9)

octal-buffers and line drivers with 3-state outputs are used to

isolate one port access to the dual-port DRAM controller from the

other port. The port is selected by the appropriate clock edge and

control signal to the request input (REQl* or REQ2*) of the 74F764

dual-port DRAM controller.

The control signal for REQ1* of the 74F764 (CS764REQl*)

is generated by the local bus address decoder and the control

signal for REQ2* of the 74F764 (CS764REQ2*) is generated by the

VMEbus address decoder. If CS764REQI* is active on a rising clock

edge and SEL2* is not asserted, the local master is granted access

to the 74F764. The dual-port DRAM controller then asserts SEL1* to

enable the 74LS244s and 74LS245s on the local bus side.

48

If CS764REQ2* is active on a falling clock edge and

SELl* is not asserted, the global bus master is granted access into

the 74F764. The dual-port DRAM controller then asserts SEL2* to

enable the 74LS244s and 74LS245s for the global bus side. In each

case, the select line is released after the request signal is no

longer asserted.

If both request lines are asserted and neither select

line is asserted, on the next (rising or falling) clock edge, the

select signal will be generated for the appropriate port access.

The request that is locked out cannot gain access to the dual-port

DRAM controller until the other port has completed its task and is

no longer asserting its request signal.

The 74LS245s octal-bus transceivers with 3-state

outputs, illuistrated in Figure E.10, are used to buffer the data

signals. Data can be sent between the CPU and the VMEbus, between

the CPU and the DRAM or between the DRAM and the VMEbus. The data

enable signal (DATAEN*) enables data to flow between the CPU and

the VMEbus. The select port one (SELl*) signal enables data to

flow between the CPU and the DRAM, while the SEL2* signal enables

data to flow between the DRAM and the VMEbus. The data flow

direction to the 74LS245s is controlled by the read/write (R/W*)

signal during local DRAM accesses, while the global R/W* signal

(GR/W*) controls the direction for global DRAM accesses. The data

direction enable (DDEN) signal controls the data direction flow

between the CPU and the VMEbus.

49

The 74F764 can only effectively accommodate 18 address

lines. Consequently, additional logic illustrated in Figure E.11

must be incorporated to handle address bit A19, which is required

to give access to the desired one megabyte of RAM.

When the row address strobe (RAS*) signal becomes

inactive, the data transfer acknowledge output from the 74F764

(DTACK764) is asserted. The DTACK signal of the 74F764 signals

that data has been transferred to or from memory.

g. Dynamic Random Access Memory

The dynamic random access memory circuitry (Figs.

E.12, E.13, E.14 and E.15) provides one megabyte of DRAM for the

mabter circuit board subsystem. The DRAM is divided into two 512k

byte blocks. The odd bytes are stored in one 512k byte block

(Figs. E.12 and E.13), while the even bytes are stored in the other

512k byte block (Figs. E.14 and E.15).

The DRAM receives refresh cycles from the dual-port

DRAM controller. Although the 74F764 dual-port DRAM controller

seizes control of the DRAM during refresh cycles, a bus arbitration

process is not needed. An 8 MHz clock pulse (RCP) is divided by 64

to produce a refresh request internal to the 74F764. If no request

signal (REQI* or REQ2*) is asserted on the 74F764, a nine-bit

counter internal to the 74F764 is incremented. The counter value

which represents the row in memory to be refreshed is then placed

on output lines MAO through MA8 of the 74F764. The RAS* signal is

then asserted for four clock cycles to refresh a row in memory.

50

Finally, the RAS* signal is released and the refresh cycle is

complete.

h. EPROM and SRAM

The EPROM and SRAM circuitry (Fig. E.16) provide 64k

bytes of ROM and 16k bytes of SRAM. The EPROM contains the

resident exception vector table and the monitor/debugger program.

The SRAM is upward compatible from the minimum system. If

additional memory is required by a resident operating system, a

modification to the local bus address decoding logic would permit

the size of ROM or RAM to be increased.

i. Dual Serial Port

The MC68681 dual universal asynchronous receiver/

transmitter serial port circuitry (Fig. E.17) is used to provide

serial communications with the terminal and the IBM XT/AT computer.

Port A is dedicated to the terminal and Port B is dedicated to the

IBM XT/AT ccmputer. The 3.6864 MHz crystal is used to generate the

baud rates for data transmission for both ports. The terminal

provides an interface to the system for the user. The IBM XT/AT is

used to down-load files into the master circuit board subsystem's

memory.

j. Interrupt Handler

The interrupt handler circuitry (Fig. E.18) provides

the necessary logic to accomnodate interrupts from devices residing

on the master circuit board subsystem and global devices residing

on other subsystems. The SCB68155 interrupt handler can

51

accommodate six local interrupts, seven global interrupts and a

non-maskable interrupt (NMI).

Local interrupts (LRQl* through LRQ6*) have a higher

precedence than the global interrupts (IRQl* through IRQ7*). The

local interrupt signal LRQ6* has the highest priority, while local

interrupt signal LRQI* has the lowest priority. The global

interrupt signal IRQ7* has the highest priority, while global

interrupt signal IRQ1* has the lowest priority. The NMI signal has

priority over local and global interrupts and it is provided for a

catastrophic occurrence such as an alternating current (AC) power

failure.

Local interrupts are generated by the DUART and the

MMU. The DUART is programmed to provide an interrupt request when

a port buffer full condition is met. The buffer full condition of

the MC68681 DUART occurs whenever a character is received from the

terminal keyboard or from the IBM XT/AT. The local interrupt

generated by the MC68451 MMU occurs when the interrupt bit of the

page status register is set during normal address translation.

When a local or global interrupt occurs, the interrupt

handler hardware generates an interrupt priority level output on

lines IPLO* through IPL2* to the CPU. The CPU responds by

acknowledging the interrupt with the interrupt acknowledge signal

(IACK*) and places the interrupt level on address lines Al through

A3. The interrupt handler hardware reads the interrupt level on

address lines Al through A3 to determine which level is being

acknowledged. If the interrupt was from a local device, the

52

interrupting device provides the vector number on the local data

bus. If the interrupt was from another subsystem on the VMEbus,

the interrupt handler hardware generates a bus interrupt

acknowledge (BIACK*) signal to the VMEbus controller and the

VMEbus. The VMEbus controller obtains control of the data transfer

bus (DTB) so that an interrupt vector can be obtained from the

interrupting subsystem. The BIACK* signal is only generated if the

bus interrupt level is not masked (within the interrupt handler)

and a local interrupt is not pending.

Once the local CPU has acknowledged the (local or

global) interrupt request and has obtained an interrupt vector, the

local CPU saves the state of the machine and transfers control to

the appropriate interrupt handling routine. This prepares the CPU

to perform an interrupt handling routine. After completion of the

interrupt handling routine, the stored state of the machine is

restored and the CPU resumes processing where it left off at the

interrupt. [Ref. 7:pp. 4-3 - 4-16; Ref. 18:pp. 5-1 - 5-15]

k. Data Transfer Acknowledge aiid Bus Error Generation

The data transfer acknowledge and bus error generation

circuitry (Fig. E.19) provides control signals to the CPU. This

circuitry physically resides within a Altera EP310 EPLD. The

DTACK* signal denotes that a data transfer has been completed by

the slave device addressed. The MC68681 DUART, AC68451 MMU,

SCB68172 VMEbus controller, SCB68155 interrupt handler and 74F764

dual-port DRAM controller peripheral devices possess the necessary

53

logic to generate their own DTACK* signal to acknowledge receipt or

availability of data.

The master circuit board's RAM and ROM chips cannot

generate their own DTACK* signals so external circuitry must do it

for them. The DTACK* generation circuitry for the SRAM and ROM

must allow adequate time for the data transfer. All these DTACK*

signals are ORed together to produce the MC68010 DTACK* input.

If the CPU on the master circuit board makes an off-

board access using the off-board (OFFBOARD*) signal to the VMEbus

controller, the DTACK* signal (DTACKl72*) is generated from the

VMEbus controller. The off-board device provides a global DTACK*

signal (GDTACK*) to the VMEbus controller (Fig. E.20) via the

VMEbus DTACK* line. In turn, the VMEbus controller would provide

the DTACK172* signal for the DTACK* circuitry. This arrangement

permits long access times on the VMEbus.

If the master circuit board's DRAM is being accessed as

a global asset, the GDTACK* signal is generated by the SEL2* and

DTACK764 signals as illustrated in Figure E.11.

The BERR* signal is generated under one of three

conditions. First, the BERR* signal is generated when the maximum

allowable SRAM and ROM data transfer time has been reached and a

DTACK* signal has not been received by the CPU. Secondly, a global

bus error (BERRl72*) signal can be received from a VMEbus watchdog

timer if the master circuit board subsystem has control of the

VMEbus. Finally, if a page fault signal (FAULT*) is generated by

the MMU, this also causes a bus error condition.

54

The bus error condition causes exception processing to

occur. The current state of the machine is saved. Information

from the saved state of the machine can be used to determine the

cause of the bus error. This is handled by the bus error exception

routine as part of an operating system.

If the first port of the dual-port DRAM controller is

not active and a refresh cycle is not taking place, a global bus

master can have access to the DRAM. The master circuit board's CPU

is unaware of the access to the DRAM through the second port.

Consequently, the burden is placed upon a global master or a VMEbus

watchdog timer to provide a global BERR* signal (GBERR*) on the

VMEbus BERR* line, when appropriate, to the VMEbus controller. The

GBERR* signal is sent to the BERR* circuitry (Fig. E.19) via the

BERRI72* signal.

1. VMEbus Controller

The VMEbus controller circuitry (Fig. E.20) provides

the necessary logic for the master circuit board subsystem to gain

access to the VMEbus. The SCB68172 VMEbus controller provides

contr'! signals (VMEEN*, DATAEN* and DDEN) to the master circuit

board subsystem's drivers and transceivers. The purpose of the

VMEbus enable (VMEEN*) signal is to enable the bus drivers only

when there is an off-board (OFFBOARD*) access. In addition, the

data flow (DATAEN*) and its direction (DDEN) are controlled.

Parallel jacks are provided which permit jumper selection of the

master circuit board subsystem's priority on the VMEbus.

55

m. VMEbus Address Decoding

The VMEbus address decode circuitry (Fig. E.21) permits

access of a global bus master to the second port of the dual-port

DRAM controller and ultimately into DRAM. Any subsystem, which has

gained control of the VMEbus, has the ability to access the

designated (by the operating system) area of DRAM for semaphore

passing. The VMEbus address decoder provides the chip select

signal CS764REQ2* to the dual-port DRAM controller (Fig. E.9) . If

the CS764REQ2* is asserted when clock edge falls and SELl* signal

of the 74F764 is not asserted, the isolation drivers are enabled to

permit the flow of data and addresses from the global resource to

the DRAM.

n. VMEbus Drivers

The circuitry for the master circuit board's VMEbus

drivers (Figs. E.22, E.23 and E.24) provides control of signals

from the local bus to the VMEbus and from the VMEbus to the local

bus. The VMEbus controller controls the direction of the signal

flow as requested by the CPU. Whenever the local bus master, the

CPU, is not in control of the VMEbus, all signals from the local

bus are isolated at the drivers by the VMEbus controller. Thus, in

this case, no signals are gated onto the VMEbus from the local bus.

However, another subsystem, if in control of the VMEbus, has direct

access to the DRAM through the dual-port DRAM controller. The

global addresses on the VMEbus fall into the range of the one

megabyte of user DRAM in the master circuit board subsystem's

memory map (Table II).

56

3. System Controller Circuit Board

a. Bus Arbiter

The VMEbus arbitration circuitry (Fig. E.25) provides

the logic to arbitrate prioritized bus requests in parallel. Each

bus request is then daisy chained down to the requesting device.

Each subsystem capable of VMEbus access must have the ability to

provide a bus request at one of four priority levels. The highest

priority signal used is DBG7*, while the lowest priority level

signal used is DBG4*. The process of resolving the VMEbus requests

was described in Chapter II. Since the MC68452 bus arbitration

module (BAM) [Ref. 8] is an asynchronous device, the bus grant

signals (DBGx*) are not guaranteed to be spike-free. Consequently,

a 50 nanosecond delay circuit is used to disable the DBGx* signals

during the parallel arbitration process.

b. System Reset

The system reset circuitry (Fig. E.26) provides a

system-wide master reset. This signal is sent on the VMEbus to all

circuit boards and it is used to reset the entire system much like

the local reset discussed earlier in this chapter.

c. VMEbus Drivers

The circuitry for the system controller drivers (Fig.

E.27) provides the drive capability for signals to/from the VMEbus.

Since circuitry was not designed to detect an AC power failure, the

ACFAIL* signal is never asserted. This signal is input to the non-

maskable interrupt of the interrupt handler (Fig. E.17) . The bus

clear (BCLR*) signal informs the current bus master that there is

57

a higher pending bus request. Burden is placed upon the current

bus master to either relinquish control of the bus or to continue

control until its task is completed. For the sake of simplicity,

the master circuit board subsystem was designed to relinquish

control upon the completion of its task. Finally, an IACK* daisy

chain driver is provided for VMEbus interrupts.

58

V. RESULTS

Once the minimal system and fully integrated system hardware

was designed, the schematic drawings drafted and the pin-out list

implemented, software support was required to implement the minimal

system. The monitor/debugger program required a thorough check of

all its software features. These software features include the

capability to set and remove a breakpoint, to display and modify

memory, to display and change registers, to start program execution

and to down-load software from a development system.

It was discovered while debugging the down-load portion of the

monitor/debugger program that the 2500AD 68010 cross assembler's

linking process incorrectly resolved external references. The

lirking process generates a file in the Motorola S-record format.

The problem was isolated only after comparing the Motorola S-record

to Motorola's instruction format. It was identified that the

2500AD cross assembler was improperly resolving external

references. A corrected version of the 2500AD cross assembler was

obtained from the vendor that resolved this problem. With the

monitor/debugger software developed, the minimal system design was

complete.

The monitor/debugger and vector table were programmed in the

erasable programmable read-only memory (EPROM) with the Data I/O

System 29 Universal Programmer. The Data I/O System 29 segregated

59

the even bytes and odd bytes into separate EPROMs as required by

the Motorola MC68010 central processor unit (CPU).

Erasable programmable logic devices (EPLDs) were used to reduce

the chip count in the minimal system design. The minimal system

used an EPLD to perform the interrupt request (IRQ681*) and the

interrupt acknowledge (IACK681*) logic. Also, EPLDs were used to

implement the circuit logic required for the generation of the data

transfer acknowledge (DTACK) and the bus error (BERR) signals and

for address decoding. In order to program the EPLDs, Abel software

was used to compile the source code representation of the logic to

be implemented with the EPLD. Once all of the source code for the

EPLDs had been written, compiled and software tested, the EPLDs

were programmed.

On the Data I/O System 29, once the EPLD is programmed, the

test vectors are again tested against the programmed EPLD. During

this test run, the System 29 failed for every EPLD that was

programmed, even though they passed the software tests. On the

advice of an applications engineer at Data I/O Corporation, the

test vectors were removed from the source code. This code was

compiled, then the EPLDs were programmed. The EPLDs were bread-

boarded, while determining with reasonable certainty that the

devices were actually implementing the desired logic.

The ultimate goal in this thesis was to implement the master

circuit board subsystem design. One of the steps to achieve this

goal requires the memory management unit (MMU) to translate a

virtual address to a physical address. To avoid significant wiring

60

modifications to the minimal system to build up to the master

subsystem, the MMU was wire-wrapped into the minimal system 'iesign.

However, the MMU was not programmed at the minimal system stage.

The MMU translates a virtual address to the same physical address

when the MMU is not programmed after being reset. The MMU was

configured to accommodate an automatic, manual and programmed (CPU

reset instruction) reset.

61

VI. SUMMARY AND CONCLUSIONS

A. SUMMARY

The goal of this thesis was two-fold: first, to explore

hardware ramifications of designing a microprocessor system for a

multi-processor environment; and secondly, to implement the

minimal system design.

1. Design Concepts

In exploring hardware ramifications, the scope was limited

to features of the VMEbus structure, in memory-management and

interrupt control. The memory-management features included memory

protection, dual-ported memory and virtual-memory.

a. VMEbus Structure

The VMEbus permits an exchange of data and control

beyond the boundaries of a single circuit board. Other subsystems

or circuit boards which may include processing elements, memory

and/or input/output (I/O) devices can be integrated to the VMEbus.

A strict adherence to data transfer protocols over the VMEbus

ensures the reliability and integrity of the system. The ability

to integrate various subsystems along the VMEbus supports a multi-

processor environment.

b. Memory-Management

The Motorola MC68010 central processor unit (CPU)

generates function codes which can be used by the memory management

unit (MMU) to partition memory into supervisor and user portions.

62

An operating system would manage memory partitioning. Normally,

systems are designed so that the supervisor memory portion contains

the memory-mapped I/O devices and the read-only memory (ROM) and

some random access memory (RAM). The ROM is mapped to the

supervisor portion of memory since it provides the exception vector

table and start-up program.

The function codes reflect the CPU's two modes of

operation, the supervisor and user. The supervisor mode is a

privileged mode which permits access to all instructions and the

full range of memory (supervisor and user memory). The user mode

permits access to only user instructions and the user memory.

Typically, in the user mode, permission must be granted through the

operating system to use system resources. The separation of

supervisor memory from user memory prevents the user from tampering

with the system assets or gaining supervisor privileges.

Dual-ported memory permits two separate sources to

access the same memory block and provides the refresh signals for

the dynamic random access memory (DRAM) . Dual-ported memory

permits RAM to be used as a shared asset. It is especially useful

when a portion of the physical RAM is dedicated to passing

parameters between microprocessor subsystems. Dedicating a portion

of RAM for parameters is analogous to a mailbox delivery system.

The mail courier (subsystem 1) delivers mail (parameters) to the

mailbox (RAM). The addressee (subsystem 2) picks up the mail

(parameters) and responds as required. If appropriate, the

occupant (subsystem 2) places mail (parameters) in the mailbox

63

(RAM) to be delivered (to subsystem 1). These parameters can be

used in managing a multi-processor operating system.

A MC68010-based system typically has memory-mapped I/O

devices, RAM and ROM. DRAM is added the master circuit board

subsystem to supplement the minimal system's static random access

memory (SRAM). The MC68010 CPU has a virtual address range of 16

megabytes. However, the physical RAM's size is usually

considerably less than the size of the virtual address space.

Virtual-memory is used to extend the range of programming beyond

the range of physical RAM. An MMU is used to map virtual addresses

into RAM physical addresses. Also, the MMU detects an attempt by

the CPU to access a virtual-memory address which is not currently

present in physical memory. When such an attempt is detected, the

MMU generates a page fault. This page fault causes the page fault

exception routine to be invoked. The exception routine reads a

page of information from secondary storage into RAM. The MMU maps

the virtual addresses associated with the page into addresses in

the physical RAM. After completion of the exception routine,

program execution resumes with the completion of the instruction

that caused the page fault.

c. Interrupt Control

Using interrupts results in more effective use of the

microprocessor because the microprocessor is not kept waiting for

a device to respond. The devices requesting interrupts in this

thesis are programmed to provide an interrupt vector number during

an interrupt acknowledge cycle for local interrupts. The interrupt

64

vector number causes the address of the exception routine to be

obtained from the exception vector table by the CPU so that it can

be executed.

2. Design Implementation

a. Hardware Configurations

The recommended wiring configurations that accompanied

the product specifications for the MMU, VMEbus controller, dual

universal asynchronous receiver/transmitter (DUART), dual-port DRAM

controller, interrupt handler hardware and bus arbitration module

(BAM) greatly assisted in the designs of the minimal system, system

controller subsystem and master circuit board subsystem. However,

in order to integrate these components into a system, care was

taken to ensure that the control signals were interfaced properly.

Since no computer-aided design (CAD) tools existed at the Naval

Postgraduate School (NPS) to fully simulate even the minimal system

design, prototyping the minimal system was necessary. The minimal

system has a foundation of core resources. The intent was to prove

the system design by building up a master circuit board subsystem

from the minimal system.

The system controller subsystem provides a bus arbiter,

interrupt acknowledge (IACK*) daisy chain driver and system-wide

reset. The bus arbiter determines bus ownership between subsystems

that make bus requests and it grants bus ownership to the subsystem

with the highest priority. An IACK* daisy chain driver sends the

IACK* signal on to the bus during an interrupt acknowledge cycle.

65

The system reset is used to reset all devices on all subsystems

after a system failure.

The master circuit board subsystem accommodates the

VMEbus structure, virtual-memory-mapping facilities, a protected

memory scheme, dual-ported memory and interrupt handling hardware.

The master circuit board subsystem design is an extension of the

minimal system and should not be implemented until the minimal

system is operational. In the master circuit board subsystem, the

VMEbus controller provides the necessary logic to meet the VMEbus

specification foi setting up the baseline bus structure. Drivers

and transceivers are incorporated to meet the specified signal

drive capability and isolation requirements.

b. Erasable Programmable Logic Devices

The erasable programmable logic device (EPLD) used in

the minimal system's address decoding must be modified to include

the additional memory-mapped devices cf the master circuit board

subsystem. The EPLD used for interrupt handling in the minimal

system is replace by the interrupt handler hardware in the master

circuit board subsystem design.

The master circuit board subsystem design is an

upgraded version of the minimal system. A pin-out list for all

wiring connections was developed in order to reduce wire-wrap

errors, but it is not included as part of this thesis. The small

scale integrated circuit (SSI) logic shown for the generation of

the data transfer acknowledge (DTACK), bus error (BERR), physical

upper data strobe (PUDS*), physical lower data strobe (PLDS*) and

66

physical address strobe (PAS*) signals was actually implemented

with EPLDs to reduce the chip count.

B. CONCLUSIONS

Meeting all the goals set in this thesis made this thesis an

ambitious undertaking. The major integrated circuit (IC) chips

included the CPU, DUART, interrupt handler hardware, dual-port DRAM

controller, MMU, VMEbus controller and BAM. These IC chips

required an extensive study of product specification and

application notes to understand the wiring configurations and

programming of the devices. Study of the specification notes

invoked support ideas in the design that required further

investigation. These support ideas included DRAM memory refresh

accommodations, driver characteristics, noise reduction and

virtual-memory. Once each device was reasonably understood, the

problem of integrating the devices into a single system remained.

Care was exercised to ensure that control signals were properly

integrated to the devices. Consequently, a major portion of this

thesis was spent in the research and design process without the

assistance of CAD tools.

The design and implementation work of this thesis spanned

almost two years. A major problem encountered was the inability to

simulate the system designs. Hence, the system's validity could

only be verified by actual design implementation.

The design phase took a considerable length of time because the

inter-relationships between the devices to support a multi-

processor environment, dual-port memory, virtual-memory, memory

67

protection, dual serial ports and interrupt control features were

not trivial. Some of these features should have been eliminated so

that a simpler design could have been implemented. However, using

the approach of building a complex subsystem from a minimal system

is an important technique. For a growing number of new application

IC chips, facilities to simulate designs using these chips do not

yet exist. Thus, there is a strong need for advanced design tools

and engineering practices to support complex designs.

An important restriction of the master circuit board subsystem

design is the lack of an operating system. The capability provided

in this thesis could not be fully utilized without an operating

system and a mass storage device, such as a hard disk. Managing

the virtual-memory and protected memory requirements would require

a tremendous amount of code which is beyond the scope of this

thesis. However, while designing the master circuit board

subsystem, foresight was exercised to consider the requirements of

an operating system. This confirms the need for a dialogue

between system designers and operating system designers to

communicate the system requirements.

68

APPENDIX A: MC68010 16-BIT MICROPROCESSOR

Since the entire hardware system design revolves about the

MC68010 microprocessor, a description of the microprocessor, its

external signals and its programming is appropriate.

A. MC68010 DESCRIPTION

The MC68010 has seventeen 32-bit general purpose registers, a

16 megabyte address space, virtual-memory/machine support, 57

instructions with 14 addressing modes using five main data types

and memory-mapped input/output (I/O) [Ref. 7:p. 1-1] Motorola

provides a complete signal description and timing analysis of the

MC68010 microprocessor [Ref. 18].

B. MC68010 SIGNALS

The MC68010 central processing unit (CPU) comes in a 64-pin

package. As shown in Figure A.1, the signals are organized into

groups and the direction of the signal flow is denoted by the

arrows. To avoid any confusion over logic assertion levels, the

asterisk (*) at the end of a signal name is used to denote an

active low assertion level.

1. Address Bus

The address bus consists of 23 address lines giving an

eight megaword address range for the CPU.

69

Vcc(2) -> => ADDRESS BUS A1-A23
MISCELLANEOUS GND(2) -> <=> DATA BUS DO-D15

CLK ->
> AS* -

FCO <> R/W* ASYNCHRONOUS
PROCESSOR FC < > UDS* BUS

STATUS _FC2 > LDS* CONTROL
<- DTACK*-

M6800 E <- MC68010
PERIPHERAL VMA* <- <- BR* BUS
CONTROL VPA* -> > BG* ARBITRATION

<- BGACK * CONTROL
BERR* ->

SYSTEM RESET* <-> <- IPLO*
CONTROL -CHALT* <-> <- IPL1* INTERRUPT

<-- IPL2* CONTROL

Figure A.l: MC68010 Signal Groups

2. Data Bus

The data bus is a 16-bit bi-directional bus used for

transferring byte or word length data.

3. Asynchronous Bus Control

The asynchronous bus control group provides information

about the data that is being transferred. The address strobe (AS*)

signal signifies that valid address signals are being gated from

the CPU. The read/write (R/W*) line denotes that the CPU is

reading from a device (active high) or that the CPU is writing to

the device (active low). The upper data strobe (UDS*) indicates

that the data being transferred is on an even byte boundary. The

lower data strobe (LDS*) indicates that the data being transferred

is on an odd byte boundary. When UDS* and LDS* are both asserted,

a word (16-bits) of data is being transferred. The UDS* and LDS*

70

signals together determine address bit AO, thus giving an address

range of 16 megabytes for the CPU. The UDS*, LDS* and R/W* signals

control the flow of the data on the data bus as illustrated in

Table III [Ref. 18:p. 4-2] . Finally, the data transfer acknowledge

(DTACK*) signal informs the CPU that the current data transfer has

been completed by the peripheral device or memory location

addressed.

TABLE III: DATA STROBE CONTROL OF THE DATA BUS

UDS* LDS* R/W* D8 - D15 DO - D7

1 1 lor0 NO VALID DATA BITS NO VALID DATA BITS
0 0 1 VALID DATA BITS VALID DATA BITS
1 0 1 NO VALID DATA BITS VALID DATA BITS
0 1 1 VALID DATA BITS NO VALID DATA BITS
0 0 0 VALID DATA BITS VALID DATA BITS
1 0 0 #VALID DATA BITS 0-7 VALID DATA BITS
0 1 0 VALID DATA BITS #VALID DATA BITS 8-15

These conditions are a result of current implementation and
may not appear on future devices.

4. Bus Arbitration Control

As a group, the bus arbitration control signals provide a

mechanism for the CPU to give up control of the bus. However,

these signals do not determine (directly) which alternate bus

master gets control. The bus request (BR*) signal is a signal

generated by a device or devices requesting access to the bus. The

bus grant (BG*) is a signal from the CPU indicating that it will

release the bus at the end of the current bus cycle. The bus

71

grant acknowledge (BGACK*) is a signal asserted by an alternate bus

master while it has control of the bus.

5. Interrupt Control

The interrupt priority levels (IPLO* through IPL2*) are

signals which represent the encoded priority level for the highest

priority device desiring interrupt service. The signal IPLO* is

the least significant bit and the signal IPL2* is the most

significant bit of the group. A level zero interrupt (all signals

are asserted high) indicates there is no interrupt request pending.

A level seven interrupt (all IPLx* signals are asserted low) has

the highest priority and is non-maskable. This implies that level

seven is not an ordinary interrupt level for requesting routine

interrupt service. Rather, a level seven interrupt should be

reserved for catastrophic events such as alternating current (AC)

power failure where the non-maskable property is essential.

6. System Control

The system control group is used to reset the CPU and to

indicate to the CPU that a bus error has occurred. It is also used

to reset peripheral devices and to generate a bus error exception.

The halt signal (HALT*), active low, is a bi-directional signal.

As an input, it is used to stop the CPU at the completion of the

current bus cycle. As an output, HALT* is asserted only when a

double bus error or address error exception has caused the MC68010

to enter a halt state.

The reset signal (RESET*), active low, is also a bi-

directional signal. It can be used as an input to reset the

72

internal microcircuitry within the CPU. When a reset instruction

is executed by the CPU, it can be used to reset system devices.

Typically, a maximum time is allotted for data transfer.

If the data transfer is not completed within the allotted time, bus

error (BERR*) is asserted by a time out circuit called a watchdog

timer. Often, the BERR* signal is used to inform the CPU that the

current address on the address bus is invalid because no physical

memory or peripheral device is mapped at that address. The BERR*

signal can also be used to flag the condition that the CPU is

making an attempt to write to read-only memory (ROM). In a

virtual-memory system, BERR* is asserted by the memory management

unit (MMU) when a page fault occurs.

7. M6800 Peripheral Control

The M6800 peripheral control group is a group of signals

which are used to interface the MC68010's 16-bit asynchronous data

bus to synchronous peripheral devices in the Motorola M6800 eight-

bit family.

The enable (E) signal which acts as the 6800 phase two

clock is used to synchronize data transfer between the MC68010 CPU

and M6800 peripheral device. The E signal's period is ten clock

periods of the MC68010's clock input. The valid peripheral address

(VPA*) signal denotes to the CPU that the device selected is a

M6800 peripheral device. The VPA* signal indicates to the CPU that

it should initiate a data transfer synchronized with the E signal.

The valid memory address (VMA*) signal from the CPU indicates to a

73

M6800 device that there is a valid address on the address bus and

that the MC68010 is synchronized with the E signal.

8. Processor Status

The MC68010 has three function code lines (FCO through FC2)

which delineate the current processor state (user or supervisor)

and the address space (program or data) being accessed as defined

by Table IV [Ref. 18:p. 5-3]. The address strobe (AS*) signal from

the CPU indicates that a valid address and function code are

available from the CPU.

TABLE IV: STATE AND ADDRESS SPACE

FUNCTION CODE OUTPUT ADDRESS SPACE

FC2 FCl FCO

0 0 0 UNDEFINED, RESERVED FOR FUTURE USE
0 0 1 USER DATA SPACE
0 1 0 USER PROGRAM SPACE
0 1 1 UNDEFINED, RESERVED FOR FUTURE USE
1 0 0 UNDEFINED, RESERVED FOR FUTURE USE
3. 0 1 SUPERVISOR DATA SPACE
1 1 0 SUPERVISOR PROGRAM SPACE
1 1 1 CPU SPACE (INTERRUPT ACKNOWLEDGE)

9. Miscellaneous

Both Vcc pins and both GND pins must be connected in order

to power the CPU. The clock (CLK) input signal is used to develop

all the synchronizing signals required within the CPU.

74

C. PROGRAMMING

Motorola provides programming information in its reference

manual [Ref. 71. The MC68010's instruction set includes the

following operations:

- Data Movement - Bit Manipulation
- Integer Arithmetic - Binary Coded Decimal (BCD) Arithmetic
- Logical - Program Control
- Shift and Rotate - System Control
- Bit Manipulation - Multi-processor Communications

supporting the following data types:

- Bit
- BCD (Four-bits)
- Byte (Eight-bits)
- Word (16-bits)
- Long Word (32-bits)

Fourteen addressing modes that are available to the assembly

language programmer. The addressing modes available include:

- Data Register Direct
- Address Register Direct
- Address Register Indirect
- Address Register Indirect with Postincrement
- Address Register Indirect with Predecrement
- Address Register Indirect with Offset
- Address Register Indirect with Index and Offset
- Absolute Short
- Absolute Long
- Program Counter with Offset
- Program Counter with Index and Offset
- Immediate Data
- Quick Immediate
- Implied Register

75

The following assets are available:

- Eight Data Registers
- Seven Address Registers
- User Stack Pointer (User Mode)
- Supervisor Stack Pointer (Supervisor Mode)
- Program Counter
- *Status Register (Supervisor mode)
- Vector Base Register (Supervisor Mode)
- Alternate Function Code Registers (Supervisor Mode)

* The condition code register is the lower byte of the
status register and it is accessible in the user mode.

To support virtual-memory, the MC68010 microprocessor allows an

interrupted bus cycle to be re-run after a bus error exception.

The return from exception (RTE) instruction uses the format field

of the exception stack to determine whether the exception was

caused by bus or address error. After a bus or address error

caused the exception, the CPU continues the interrupted instruction

after completion of the exception routine. [Ref. 19]

76

APPENDIX B: MINIMAL SYSTEM EXCEPTION VECTOR TABLE AND
MONITOR/DEBUGGER PROGRAM

This appendix contains the source listings of the exception

vector table and monitor/debugger program. The separate file names

are as follows:

- VECTABLE.ASM
- MAIN.ASM
- MESSAGE.ASM
- CONSOLE.ASM
- GETSTRIN.ASM
- GET ADDR.ASM
- 10 UTIL.ASM
- DECODER.ASM
- BYTEOUT.ASM
- MEM LIST.ASM
- HEXCONV.ASM
- GO.ASM
- STUB.ASM
- REG.ASM
- REGCHANG.ASM
- DOWNLOAD.ASM
- UNUSED.ASM

Using the 2500AD 68010 cross assembler and linker, a Motorola

S-record format file was generated as a load module. The load

module was loaded as a ASCII file into a Data I/O System 29

Universal Programmer. Once resident in the programmer, the load

module was programmed to erasable programmable read-only memory

(EPROM). It should be noted that the data section as contained in

MAIN.ASM was not programmed on EPROM, but rather it resides in

random access memory (RAM).

The first two entries in the exception vector table are used

during the system boot up to provide the initial contents for the

stack pointer and the program counter. The exception vector table

contains the addresses of exception routines. The monitor/debugger

77

program initializes the MC68681 peripheral device and provides

facilities for performing software debugging and the down-loading

of files from an IBM XT/AT compatible computer.

78

* EXCEPTION VECTOR TABLE *

* WRITTEN BY LARRY ABBJTT JUNE 5, 1987 *

* FILENAME: VECTABLE.ASM *

* VERSION 1.3 *
* REV DATE NAME DESCRIPTION *

* A 29 SEPT 87 DAVID M. SENDEK ADDITIONAL DOCUMENTATION *

* DEFINING MODULES OF EXTERNALLY DECLARED VARIABLES: *

* BKPT - GO.ASM *
* INIT - MAIN.ASM *
* INIT SP - MAIN.ASM *
* MESSAGE - MESSAGE.ASM *
* MONITOR - MAIN.ASM *
* UNUSED - UNUSED.ASM *

EXTERNAL BKPT, INIT, INITSP,MESSAGE,MONITOR
EXTERNAL UNUSED

ORG 0 VECTOR TABLE STARTS AT ABSOLUTE ADDRESS $000000
LONG INIT SP INITIAL STACK POINTER VECTOR
LONG INIT INITIAL PROGRAM COUNTER (PC)

VECTOR

LONG UNUSED BUS ERROR VECTOR
LONG UNUSED ADDRESS ERROR VECTOR
LONG UNUSED ILLEGAL INSTRUCTION VECTOR
LONG UNUSED ZERO DIVIDE VECTOR
LONG UNUSED CHK INSTRUCTION VECTOR
LONG UNUSED TRAPV INSTRUCTION VECTOR
LONG UNUSED PRIVILEGE VIOLATION VECTOR
LONG UNUSED TRACE VECTOR
LONG UNUSED LINE 1010 EMULATION VECTOR
LONG UNUSED LINE 1111 EMULATION VECTOR
ORG $38 NOTE: VECTOR NUMBERS 12 AND 13

ARE UNASSIGNED,RESERVED
LONG UNUSED FORMAT ERROR VECTOR
LONG UNUSED UNINITIALIZED INTERRUPT VECTOR
ORG $60 NOTE: VECTOR NUMBERS 16-23 ARE

UNASSIGNED,RESERVED
LONG UNUSED SPURIOUS INTERRUPT VECTOR
LONG UNUSED LEVEL 1 AUTOVECTOR VECTOR
LONG UNUSED LEVEL 2 AUTOVECTOR VECTOR
LONG UNUSED LEVEL 3 AUTOVECTOR VECTOR
LONG UNUSED LEVEL 4 AUTOVECTOR VECTOR
LONG UNUSED LEVEL 5 AUTOVECTOR VECTOR
LONG UNUSED LEVEL 6 AUTOVECTOR VECTOR
LONG UNUSED LEVEL 7 AUTOVECTOR VECTOR

79

LONG BKPT TRAP 0 VECTOR USED AS
MONITOR BRKPT

LONG UNUSED TRAP 1 VECTOR
LONG UNUSED TRAP 2 VECTOR
LONG UNUSED TRAP 3 VECTOR
LONG UNUSED TRAP 4 VECTOR
LONG UNUSED TRAP 5 VECTOR
LONG UNUSED TRAP 6 VECTOR
LONG UNUSED TRAP 7 VECTOR
ORG $100 NOTE: VECTOR NUMBERS 48-63 ARE

UNASSIGNED,RESERVED
LONG MONITOR USER INTERRUPT 0 VECTOR

DEFINED FOR MONITOR
LONG UNUSED USER INTERRUPT 1 VECTOR
LONG UNUSED USER INTERRUPT 2 VECTOR
LONG UNUSED USER INTERRUPT 3 VECTOR
LONG UNUSED USER INTERRUPT 4 VECTOR
LONG UNUSED USER INTERRUPT 5 VECTOR
LONG UNUSED USER INTERRUPT 6 VECTOR
LONG UNUSED USER INTERRUPT 7 VECTOR
LONG UNUSED USER INTERRUPT 8 VECTOR
LONG UNUSED USER INTERRUPT 9 VECTOR
LONG UNUSED USER INTERRUPT 10 VECTOR
LONG UNUSED USER INTERRUPT 11 VECTOR
LONG UNUSED USER INTERRUPT 12 VECTOR
LONG UNUSED USER INTERRUPT 13 VECTOR
LONG UNUSED USER INTERRUPT 14 VECTOR
LONG UNUSED USER INTERRUPT 15 VECTOR
LONG UNUSED USER INTERRUPT 16 VECTOR
LONG UNUSED USER INTERRUPT 17 VECTOR
LONG UNUSED USER INTERRUPT 18 VECTOR
LONG UNUSED USER INTERRUPT 19 VECTOR
LONG UNUSED USER INTERRUPT 20 VECTOR
LONG UNUSED USER INTERRUPT 21 VECTOR
LONG UNUSED USER INTERRUPT 22 VECTOR
LONG UNUSED USER INTERRUPT 23 VECTOR
LONG UNUSED USER INTERRUPT 24 VECTOR
LONG UNUSED USER INTERRUPT 25 VECTOR
LONG UNUSED USER INTERRUPT 26 VECTOR
LONG UNUSED USER INTERRUPT 27 VECTOR
LONG UNUSED USER INTERRUPT 28 VECTOR
LONG UNUSED USER INTERRUPT 29 VECTOR
LONG UNUSED USER INTERRUPT 30 VECTOR
LONG UNUSED USER INTERRUPT 31 VECTOR
LONG UNUSED USER INTERRUPT 32 VECTOR
LONG UNUSED USER INTERRUPT 33 VECTOR
LONG UNUSED USER INTERRUPT 34 VECTOR
LONG UNUSED USER INTERRUPT 35 VECTOR
LONG UNUSED USER INTERRUPT 36 VECTOR
LONG UNUSED USER INTERRUPT 37 VECTOR
LONG UNUSED USER INTERRUPT 38 VECTOR
LONG UNUSED USER INTERRUPT 39 VECTOR

80

LONG UNUSED USER INTERRUPT 40 VECTOR
LONG UNUSED USER INTERRUPT 41 VECTOR
LONG UNUSED USER INTERRUPT 42 VECTOR
LONG UNUSED USER INTERRUPT 43 VECTOR
LONG UNUSED USER INTERRUPT 44 VECTOR
LONG UNUSED USER INTERRUPT 45 VECTOR
LONG UNUSED USER INTERRUPT 46 VECTOR
LONG UNUSED USER INTERRUPT 47 VECTOR
LONG UNUSED USER INTERRUPT 48 VECTOR
LONG UNUSED USER INTERRUPT 49 VECTOR
LONG UNUSED USER INTERRUPT 50 VECTOR
LONG UNUSED USER INTERRUPT 51 VECTOR
LONG UNUSED USER INTERRUPT 52 VECTOR
LONG UNUSED USER INTERRUPT 53 VECTOR
LONG UNUSED USER INTERRUPT 54 VECTOR
LONG UNUSED USER INTERRUPT 55 VECTOR
LONG UNUSED USER INTERRUPT 56 VECTOR
LONG UNUSED USER INTERRUPT 57 VECTOR
LONG UNUSED USER INTERRUPT 58 VECTOR
LONG UNUSED USER INTERRUPT 59 VECTOR
LONG UNUSED USER INTERRUPT 60 VECTOR
LONG UNUSED USER INTERRUPT 61 VECTOR
LONG UNUSED USER INTERRUPT 62 VECTOR
LONG UNUSED USER INTERRUPT 63 VECTOR
LONG UNUSED USER INTERRUPT 64 VECTOR
LONG UNUSED USER INTERRUPT 65 VECTOR
LONG UNUSED USER INTERRUPT 66 VECTOR
LONG UNUSED USER INTERRUPT 67 VECTOR
LONG UNUSED USER INTERRUPT 68 VECTOR
LONG UNUSED USER INTERRUPT 69 VECTOR
LONG UNUSED USER INTERRUPT 70 VECTOR
LONG UNUSED USER INTERRUPT 71 VECTOR
LONG UNUSED USER INTERRUPT 72 VECTOR
LONG UNUSED USER INTERRUPT 73 VECTOR
LONG UNUSED USER INTERRUPT 74 VECTOR
LONG UNUSED USER INTERRUPT 75 VECTOR
LONG UNUSED USER INTERRUPT 76 VECTOR
LONG UNUSED USER INTERRUPT 77 VECTOR
LONG UNUSED USER INTERRUPT 78 VECTOR
LONG UNUSED USER INTERRUPT 79 VECTOR
LONG UNUSED USER INTERRUPT 80 VECTOR
LONG UNUSED USER INTERRUPT 81 VECTOR
LONG UNUSED USER INTERRUPT 82 VECTOR
LONG UNUSED USER INTERRUPT 83 VECTOR
LONG UNUSED USER INTERRUPT 84 VECTOR
LONG UNUSED USER INTERRUPT 85 VECTOR
LONG UNUSED USER INTERRUPT 86 VECTOR
LONG UNUSED USER INTERRUPT 87 VECTOR
LONG UNUSED USER INTERRUPT 88 VECTOR
LONG UNUSED USER INTERRUPT 89 VECTOR
LONG UNUSED USER INTERRUPT 90 VECTOR
LONG UNUSED USER INTERRUPT 91 VECTOR

81

LONG UNUSED USER INTERRUPT 92 VECTOR
LONG UNUSED USER INTERRUPT 93 VECTOR
LONG UNUSED USER INTERRUPT 94 VECTOR
LONG UNUSED USER INTERRUPT 95 VECTOR
LONG UNUSED USER INTERRUPT 96 VECTOR
LONG UNUSED USER INTERRUPT 97 VECTOR
LONG UNUSED USER INTERRUPT 98 VECTOR
LONG UNUSED USER INTERRUPT 99 VECTOR
LONG UNUSED USER INTERRUPT 100 VECTOR
LONG UNUSED USER INTERRUPT 101 VECTOR
LONG UNUSED USER INTERRUPT 102 VECTOR
LONG UNUSED USER INTERRUPT 103 VECTOR
LONG UNUSED USER INTERRUPT 104 VECTOR
LuNG UNUSED USER INTERRUPT 105 VECTOR
LONG UNUSED USER INTERRUPT 106 VECTOR
LONG UNUSED USER INTERRUPT 107 VECTOR
LONG UNUSED USER INTERRUPT 108 VECTOR
LONG UNUSED USER INTERRUPT 109 VECTOR
LONG UNUSED USER INTERRUPT 110 VECTOR
LONG UNUSED USER INTERRUPT 111 VECTOR
LONG UNUSED USER INTERRUPT 112 VECTOR
LONG UNUSED USER INTERRUPT 113 VECTOR
LONG UNUSED USER INTERRUPT 114 VECTOR
LONG UNUSED USER INTERRUPT 115 VECTOR
LONG UNUSED USER INTERRUPT 116 VECTOR
LONG UNUSED USER INTERRUPT 117 VECTOR
LONG UNUSED USER INTERRUPT 118 VECTOR
LONG UNUSED USER INTERRUPT 119 VECTOR
LONG UNUSED USER INTERRUPT 120 VECTOR
LONG UNUSED USER INTERRUPT 121 VECTOR
LONG UNUSED USER INTERRUPT 122 VECTOR
LONG UNUSED USER INTERRUPT 123 VECTOR
LONG UNUSED USER INTERRUPT 124 VECTOR
LONG UNUSED USER INTERRUPT 125 VECTOR
LONG UNUSED USER INTERRUPT 126 VECTOR
LONG UNUSED USER INTERRUPT 127 VECTOR
LONG UNUSED USER INTERRUPT 128 VECTOR
LONG UNUSED USER INTERRUPT 129 VECTOR
LONG UNUSED USER INTERRUPT 130 VECTOR
LONG UNUSED USER INTERRUPT 131 VECTOR
LONG UNUSED USER INTERRUPT 132 VECTOR
LONG UNUSED USER INTERRUPT 133 VECTOR
LONG UNUSED USER INTERRUPT 134 VECTOR
LONG UNUSED USER INTERRUPT 135 VECTOR
LONG UNUSED USER INTERRUPT 136 VECTOR
LONG UNUSED USER INTERRUPT 137 VECTOR
LONG UNUSED USER INTERRUPT 138 VECTOR
LONG UNUSED USER INTERRUPT 139 VECTOR
LONG UNUSED USER INTERRUPT 140 VECTOR
LONG UNUSED USER INTERRUPT 141 VECTOR
LONG UNUSED USER INTERRUPT 142 VECTOR
LONG UNUSED USER INTERRUPT 143 VECTOR

82

LONG UNUSED USER INTERRUPT 144 VECTOR
LONG UNUSED USER INTERRUPT 145 VECTOR
LONG UNUSED USER INTERRUPT 146 VECTOR
LONG UNUSED USER INTERRUPT 147 VECTOR
LONG UNUSED USER INTERRUPT 148 VECTOR
LONG UNUSED USER INTERRUPT 149 VECTOR
LONG UNUSED USER INTERRUPT 150 VECTOR
LONG UNUSED USER INTERRUPT 151 VECTOR
LONG UNUSED USER INTERRUPT 152 VECTOR
LONG UNUSED USER INTER.2UPT 153 VECTOR
LONG UNUSED USER INTERRUPT 154 VECTOR
LONG UNUS;ED USER INTERRUPT 155 VECTOR
LONG UNUSED USER INTERRUPT 156 VECTOR
LONG UNUSED USER INTERRUPT 157 VECTOR
LONG UNUSED USER INTERRUPT 158 VECTOR
LONG UNUSED USER INTERRUPT 159 VECTOR
LONG UNUSED USER INTERRUPT 160 VECTOR
LONG UNUSED USER INTERRUPT 161 VECTOR
LONG UNUSED USER INTERRUPT 162 VECTOR
LONG UNUSED USER INTERRUPT 163 VECTOR
LONG UNUSED USER INTERRUPT 164 VECTOR
LONG UNUSED USER INTERRUPT 165 VECTOR
LONG UNUSED USER INTERRUPT 166 VECTOR
LONG UNUSED USER INTERRUPT 167 VECTOR
LONG UNUSED USER INTERRUPT 168 VECTOR
LONG UNUSED USER INTERRUPT 169 VECTOR
LONG UNUSED USER INTERRUPT 170 VECTOR
LONG UNUSED USER INTERRUPT 171 VECTOR
LONG UNUSED USER INTERRUPT 172 VECTOR
LONG UNUSED USER INTERRUPT 173 VECTOR
LONG UNUSED USER INTERRUPT 174 VECTOR
LONG UNUSED USER INTERRUPT 175 VECTOR
LONG UNUSED USER INTERRUPT 176 VECTOR
LONG UNUSED USER INTERRUPT 177 VECTOR
LONG UNUSED USER INTERRUPT 178 VECTOR
LONG UNUSED USER INTERRUPT 179 VECTOR
LONG UNUSED USER INTERRUPT 180 VECTOR
LONG UNUSED USER INTERRUPT 181 VECTOR
LONG UNUSED USER INTERRUPT 182 VECTOR
LONG UNUSED USER INTERRUPT 183 VECTOR
LONG UNUSED USER INTERRUPT 184 VECTOR
LONG UNUSED USER INTERRUPT 185 VECTOR
LONG UNUSED USER INTERRUPT 186 VECTOR
LONG UNUSED USER INTERRUPT 187 VECTOR
LONG UNUSED USER INTERRUPT 188 VECTOR
LONG UNUSED USER INTERRUPT 189 VECTOR
LONG UNUSED USER INTERRUPT 190 VECTOR
LONG UNUSED UbER INTERRUPT 191 VECTOR
END

83

* MAIN IS THE ENTRY POINT INTO THE MONITOR. MAIN *

* INITIALIZES THE RS-232 PORT BEFORE ENTERING THE *

* MONITOR. ALSO, MAIN CONTAINS THE MEMORY MAPS, *

* EQUATES AND MEMORY ALLOCATIONS. *

* 68K MONITOR VERSION V1.3 - AN ACCUMULATION OF ALL *

* PRIOR VERSIONS *

* COPYRIGHT @ AUG. 1986 BY DR. LARRY ABBOTT *

* FILENAME: MAIN.ASM *

* VERSION 1.3 *
* REV. MODIFIED BY DATE DESCRIPTION *

* A LARRY ABBOTT 11/7/86 *

* B LARRY ABBOTT 12/14/86 MONSTAT-ESCAPE *

* C LARRY ABBOTT 6/6/87 ADAPT TO MC68681 *

* D DAVID M. SENDEK 29 SEPT 67 -INCLUDE VECTOR TABLE *

* -INCLUDE MONITOR PROMPT *

* -CORRECT FOR 68681 *
*****~***%************

* DEFINING MODULES OF EXTERNALLY DECLARED V2'RIABLES: *
* CMD DECODE - DECODER.ASM *
* GETSTRING - GETSTRIN.ASM *
* MESSAGE - MESSAGE.ASM *
* MONMSG - MESSAGE.ASM *
* SCRLF - 10 UTIL.ASM *

GLOBAL BKPTAB, BS,BTLEN,BUFFIN, CHECKSUM, CKSUM
rLOBAL CONTINUE,CR

GLOBAL END ADDRESS,EPROMRNG, EPROMWR, ESC,ESCAPE
GLOBAL FOUND,FWDARW, HEX ERR, LF,MODIFY,MONSTAT,
GLOBAL NULL, PORT1, PORT2,RBA, RECFULL
GLOBAL SPACE, SRA, SRAM, SRAMSIZE, STRING, STRINGEND
GLOBAL SYSTAX, SRB, TBA, TBB, RBB
GLOBAL TBA,XEMPTY
GLOBAL INIT SP,INIT,MONITOR
EXTERNAL CMD DECODE,GETSTRING, MESSAGE,MONMSG, SCRLF
EXTERNAL PROMPT

DATA ALL R/W DATA IS STORED IN SRAM AT ADDRESS
* $010000
.

* EQUATES

BS EQU $08 ASCII CODE FOR <-- (BACKSPACE)
CR EQU $OD ASCII CODE FOR RET'JRN
EPROMRNG EQU $3FF EPROM RNG 0 -> $3FF (EXCEPTION TBL)
ESC EQU $1B ASCII CODE FOR ESCAPE
FWDARW EQU $3E ASCII CODE FOR '>' (FORWARD ARROW)
LF EQU $OA ASCII CODE FOR LINEFEED

84

NULL EQU $00 ASCII CODE FOR NUL
SPACE EQU $20 ASCII CODE FOR SPACE
BTLEN EQU $10 BREAKPOINT TABLE LENGTH IN WORDS

* MEMORY ALLOCATIONS
,

BKPTAB BLKW 3/2*BTLEN RESERVE BTLEN/2 32-BIT BKPT's
BUFFIN BLKB $3F RESERVE 63 BYTE INPUT BUFFER
END ADDRESS BLKW 2 RESERVE WORD FOR END ADDRESS
MONSTAT BLKW 1 RESERVE A WORD FOR MONITOR STATUS
STAX BLKW 36 SAVE AREA FOR APPLICATION REG'S
SYSTAX BLKW 2 RESERVE MEMORY FOR STACK POINTER
CK SUM BLKW 1 CHECK SUM STORAGE
SRAM EQU BKPTAB DATA BEGINS AT LOW ADDR OF SRAM
SRAMSIZE EQU $3FFF 16K BYTES OF STATIC RAM
INITSP EQU $013FFE INITIAL STACK POINTER

DEFINITION OF MONSTAT (MONITOR STATUS WORD)

EPROMWR EQU 0 WRITE TO EPROM FLAG
ESCAPE EQU 1 ESCAPE FLAG
CONTINUE EQU 2 CONTINUATION FLAG
FOUND EQU 3 CMD FOUND FLAG
HEX ERR EQU 4 HEX CONVERSION ERROR
MODIFY EQU 5 MEMORY MODIFY FLAG
STRING EQU 6 STRING BUILDING IN PROGRESS
SfRINGEND EQU 7 END OF STRING BUILDING
CHECKSUM EQU 8 CHECKSUM ERROR FLAG

* 68681 EQUATES

RECFULL EQU $00 SRA(0)=1=>RECEIVE FIFO HAS A CHAR
XEMPTY EQU $02 SRA(2)=1=>XMIT HOLDING REG EMPTY
MR1RFSET EQU $1A RESET MODE REG PTR & DISABLE XMIT/RECV
CLK SRC EQU $30 XTAL/16 CLOCK
CONF IAB EQU $13 8-BIT DATA, NO PARITY
CONF 2A EQU $07 1 STOP BIT
CONF 2B EQU $OF 2 STOP BITS
BAUD2400 EQU $88 2400 BAUD
BAUD9600 EQU $BB 9600 BAUD
EN PORT EQU $45 RESET ERROR, ENABLE XMIT & RECV
RUPTeiASK EQU $02 ENABLE RECV READY RUPT
RUPTVECT EQU $40 USER INTERRUPT 0 VECTOR

* 68681 REGISTESRS

* CRT <- PORT A:9600 BAUD,8 DATA BITS,
* NO PARITY,1 STOP BIT
* DOWNLOAD <- PORT B:2400 BAUD,8 DATA BITS,
* NO PARITY,2 STOP BITS

85

DUART EQU $7F7000 BASE ADDRESS FOR MC68681
PORT1 EQU DUART PORT A
PORT2 EQU DUART+$10 PORT B
MR1A EQU 1 R/W:MODE REG 1 FOR PORT A
MR2A EQU 1 R/W:MODE REG 2 FOR PORT A
SRA EQU 3 R :STATUS REGISTER FOR PORT A
CSRA EQU 3 W:CLOCK SELECT REGISTER A
CRA EQU 5 W:COMMAND REGISTER FOR PORT A
RBA EQU 7 R :RECEIVER BUFFER FOR PORT A
TBA EQU 7 W:TRANSMITTER BUFFER FOR PORT A
IPCR EQU 9 R :INPUT PORT CHANGE REGISTER
ACR EQU 9 W:AUXILIARY CONTROL REGISTER
ISR EQU $B R :INTERRUPT STATUS REG
IMR EQU $B W:INTERRUPT MASK REGISTER
CUR EQU $D R :COUNTER MODE: CURRENT CNTR MSB
CTUR EQU $D W:COUNTER/TIMER UPPER REGISTER
CLR EQU $F R :COUNTER MODE: CURRENT CNTR LSB
CTLR EQU $F W:COUNTER/TIMER LOWER REGISTER
MR1B EQU $11 R/W:MODE REG 1 FOR PORT B
MR2B EQU $11 R/W:MODE REG 2 FOR PORT B
SRB EQU $13 R :STATUS REGISTER FOR PORT B
CSRB EQU $13 W:CLOCK SELECT REGISTER B
CRB EQU $15 W:COMMAND REGISTER FOR PORT B
RBB EQU $17 R :RECEIVER BUFFER FOR PORT B
TBB EQU $17 W:TRANSMITTER BUFFER FOR PORT B
IVR EQU $19 R/W:INTERRUPT VECTOR REGISTER
OPCR EQU $1B W:OUTPUT PORT CONFIGURATION REG

CODE

INIT: LEA DUART,A4 A4 <-- PTR TO DUART
CLR.W MONSTAT CLR MONITOR STATUS WORD
MOVE.B #MRIRESET,CRA(A4) RESET PORT A MR1 PTR,

* DISABLE XMIT & RECV
MOVE.B #MR1RESET,CRB(A4) RESET PORT B MR1 PTR,

* DISABLE XMIT & RECV
MOVE.B #CLK SRC,ACR(A4) CNTR/TMR CLK FROM CRYSTAL/16
MOVE.B #CONF_IAB,MRIA(A4) PORT A:8 DATA BITS & NO

PARITY
MOVE.B #CONF 2A,MR2A(A4) PORT A: 1 STOP BIT
MOVE.B #BAUD9600,CSRA(A4) PORT A: 9600 BAUD
MOVE.B #CONFIAB,MR1B(A4) PORT B:8 DATA BITS & NO

PARITY
MOVE.B #CONF 2B,MR2B(A4) PORT B: 2 STOP BITS
MOVE.B #BAUD2400,CSRB(A4) PORT B: 2400 BAUD
MOVE.B #RUPTVECT,IVR(A4) SET DUART INTERRUPT SERVICE

AT USER INTERRUPT 0
MOVE.B #ENPORTCRA(A4) RESET ERRS & ENABLE *

XMIT/RCV
MOVE.B #ENPORT,CRB(A4) RESET ERRS & ENABLE *

XMIT/RCV
MOVE.B #RUPTMASK,IMR(A4) RUPT WHEN PORT A RCVS CHAR

86

BANNER:BSR SCRLF MOVE CURSOR TO NEXT LINE
LEA MONMSG,A5 SET MESSAGE POINTER TO MONMSG
BSR MESSAGE CRT<--68010 MONITOR V1.3
BSR SCRLF MOVE CURSOR TO NEXT LINE
LEA PROMPT,A5 SET UP FOR A PROMPT TO THE CRT
BSR MESSAGE SEND PROMPT TO CRT

LOOP: BRA.S LOOP WAIT FOR AN INTERRUPT

MONITOR: MOVE.L SP,SYSTAX SAVE PTR TO APPL REGs
MOVEM.L AO-A7/DO-D7,-(SP) SAVE ALL REGISTERS
LEA STAX,A6 SET MONITOR STATE PTR
MOVEM.L (A6)+,AO-A5/DO-D7 GET LAST MONITOR STATE
BSR GETSTRING ENTER MONITOR
BCLR.B #STRINGEND,MONSTAT CHECK FOR END OF STRING
BEQ RESTORE NOT THE END, SO EXIT
BCLR.B #STRING,MONSTAT CLEAR NEW STRING FLAG
BSR CMD DECODE IF END THEN DECODE
LEA PROMPT,A5 SET MSG PNTR TO PROMPT
BSR MESSAGE CRT <- '>' (CRT PROMPT)

RESTORE: MOVEM.L AO-A5/DO-D7,-(A6) SAVE MONITOR STATE
MOVEM.L (SP)+,AO-A7/DO-D7 RESTORE ALL REGISTERS
RTE
END

87

* THIS PROGRAM OUTPUTS MESSAGES TO THE CRT SCREEN. *

* WRITTEN BY DR. LARRY ABBOTT *

* FILENAME: MESSAGE.ASM *

* VERSION 1.3 *
* REV. MODIFIED BY DATE DESCRIPTION *

* A DAVID M. SENDEK 29 SEPT 87 -INCLUDE A MONITOR PROMPT*
* -INCLUDE BUFFER FULL *

* CONDITION *

* DEFINING MODULES OF EXTERNALLY DECLARED VARIABLES: *

* ECHO1 - CONSOLE.ASM *

GLOBAL BKPTMSG, EPROMSG,ERRMSG, HEXMSG, ILLMSG
GLOBAL MONMSG, REGERR, REGMSG, SRECERR, USEMSG
GLOBAL MESSAGE,PROMPT,BUFFULLMSG, SPCE
EXTERNAL ECHO1

CR EQU $OD ASCII CODE FOR RETURN
LF EQU $OA ASCII CODE FOR LINEFEED
NULL EQU $00 ASCII CODE FOR NUL

MESSAGE:MOVE.B (A5)+,DO ;GET MESSAGE CHAR,
* INCREMENT POINTER

BEQ.S MSGRET IF CHAR = NULL THEN EXIT
BSR ECHO1 ;OUTPUT CHAR TO CONSOLE
BRA.S MESSAGE ;GET ANOTHER CHARACTER

MSGRET: RTS

BKPTMSG: BYTE 'BREAKPOINT TRAP AT '

BYTE NULL
ERRMSG: BYTE 'ERROR RE-ENTER',CR,LF

BYTE NULL
EPROMSG: BYTE 'ATTEMPTED WRITE TO EPROM',CR,LF

BYTE NULL
HEXMSG: BYTE 'HEX CONVERSION ERROR.. .RE-ENTER',CR,LF

BYTE NULL
ILLMSG: BYTE 'ILLEGAL INSTRUCTION TRAP',CR,LF

BYTE NULL
MONMSG: BYTE '68010 MONITOR V1.3',CR,LF

BYTE 'WRITTEN BY DR. LARRY ABBOTT',CR,LF
BYTE '@ COPYRIGHT 1986',CR,LF
BYTE NULL

REGERR: BYTE 'REGISTER CONTENTS ERROR RE-ENTER',CR,LF
BYTE NULL

88

REGMSG: BYTE 'D0'I,NULL,' Dl=',NULL,' D2=',NULL,' D3=',
NULL, CR, LF

BYTE 'D4=',NULL,' D5=',NULL,' D6=',NULL,' D7=',
NULL, CR, LF

BYTE 'AO=',NULL,' Al=',NULL,' A2=',NULL,' A3=',
NULL, CR, LF

BYTE 'A4=',NULL,' A5=',NULL,' A6=',NULL,' A7=1,
CR, LF

BYTE 'SR=',NULL,' PC=',NULL,' (PC)=',NULL,CR,LF
BYTE 'US=',NULL,' SS=',NULL,CR,LF
BYTE NULL

SRECERR: BYTE 'S RECORD ERROR MESSAGE',LF,CR
BYTE NULL

USEMSG: BYTE 'UNUSED EXCEPTION ENCOUNTERED',LF,CR
BYTE 'WITH FORMAT WORD
BYTE NULL

PROMPT: BYTE f

BYTE NULL
SPCE: BYTE I

BYTE NULL
BUFFULLMSG: BYTE LF,CR,'INPUT BUFFER IS FULL, TRY AGAIN.',LF,CR

BYTE NULL
END

89

* THIS MODULE INPUTS FROM THE KEYBOARD AND DOWNLOAD PORT, *

* AND IT OUTPUTS CHARACTERS TO THE CRT. *

* NEW CONSOLE WRITTEN DEC. 19, 1986 BY DR. LARRY ABBOTT *

* FILENAME: CONSOLE.ASM *
** *************

* VERSION 1.3 *

* REV. MODIFIED BY DATE DESCPIPTION *

* A LARRY ABBOTT 6/6/87 ADAPT TO 68681 *
* B DAVID M. SENDEK 30 SEPT 87 DOCUMENTATION UPGRADE *

* DEFINING MODULES OF EXTERNALLY DECLARED VARIABLES:
* ESCAPE - MAIN.ASM *

* MONSTAT - MAIN.ASM *

* PORT1 - MAIN.ASM *

* PORT2 - MAIN.ASM *

* RECFULL - MAIN.ASM *

* RBA,RBB - MAIN.ASM *

* SRA,SRB - MAIN.ASM *

* TBA,TBB - MAIN.ASM *

GLOBAL ECHOI,ECHO2
GLOBAL GETCHAR1,GETCHR2
GLOBAL SCANCHR2
EXTERNAL ESCAPE,MONSTAT,PORTI,PORT2
EXTERNAL RECFULL,RBA, SRA, TBA, TBB, SRB
EXTERNAL XEMPTY,RBB

ESC EQU $1B ASCII CODE FOR ESCAPE

GETCHARI: LEA PORT1,A4 POINT TO RS 232 PORT 1
BTST.B #RECFULL,SRA(A4) CONSOLE CHAR READY ?
BEQ GETCHARI - NO, CHECK AGAIN
MOVE.B RBA(A4),DO - YES, GET CHAR
RTS

GETCHAR2: LEA PORT2,A4 POINT TO RS-232 PORT 2
BTST.B #RECFULL,SRB(A4) CONSOLE CHAR READY ?
BEQ GETCHAR2 - NO, CHECK AGAIN
MOVE.B RBB(A4),DO - YES, GET CHAR
RTS

* SCANCHAR GETS A CHARACTER FROM A PORT IF IT IS THERE
* OTHERWISE, SCANCHAR RETURNS TO THE CALLING ROUTINE

SCANCHR1 LEA PORT1,A4 POINTS TO RS-232 PORT 1
BTST.B #RECFULL,SRA(A4) DOES PORT 1 HAVE A CHAR?
BEQ.S SCAN1 EX - NO, EXIT
MOVE.B RBA(A4),DO - YES, GET CHAR

SCAN1EX RTS

90

SCANCHR2 LEA PORT2,A4 POINTS TO RS-232 PORT 2
BTST.B #RECFULL,SRB(A4) DOES PORT 2 HAVE A CHAR?
BEQ.S SCAN2 EX - NO, EXIT
MOVE.B RBB(A4),DO - YES, GET CHAR

SCAN2_EX RTS

* WHILE DOWNLOADING CHARACTERS FROM PORT 2, THIS PROCESS CAN BE
* HALTED BY SENDING AN ESC CHARACTER FROM THE KEYBOARD TO PORT 1

GETCHR2 BSR SCANCHR1 GET CHAR FROM PORT 1,IF PRESENT
CMP.B #ESC,DO IS THE CHAR AN ESCAPE ?
BEQ GC2 EXIT - YES, SO EXIT
BSR GETCHAR2 - NO, GET DOWNLOAD CHAR
BRA.S EXIT GC2

GC2 EXIT± BSET.b #ESCAPE,MONSTAT IF ESC CHAR, SET MONSTAT BIT
EXITGC2 RTS

ECHO2 LEA PORT2,A4 POINTS TO RS-232 PORT 2
BTST.B #XEMPTY,SRB(A4) IS CONSOLE XMIT RDY ?
BEQ ECHO2 - NO, CHECK AGAIN
MOVE.B DO,TBA(A4) - YES, OUTPUT CHAR TO PORT 1
RTS

ECHO1 LEA PORT1,A4 POINTS TO RS-232 PORT 1
BTST.B #XEMPTY,SRA(A4) IS CONSOLE XMIT RDY ?
BEQ ECHO1 - NO, CHECK AGAIN
MOVE.B DO,TBA(A4) - YES, OUTPUT CHAR TO PORT 1
RTS

END

91

THIS PROGRAM BUILDS THE CMD STRING INPUT FROM THE KEYBOARD.

* WRITTEN BY DR. LARRY ABBOTT *

* FILENAME: GETSTRIN.ASM *

VERSION 1.3 *
* REV. MODIFIED BY DATE DESCRIPTION *

* A DAVID M. SENDEK 2 OCT 87 DOCUMENTATION UPGRADE *
********* ** ***** **** **** ******* *********** * ***** *******

* DEFINING MODULES OF EXTERNALLY DECLARED VARIABLES: *

* BS - MAIN.ASM MESSAGE - MESSAGE.ASM *
* BUFFIN - MAIN.ASM SPCE - MESSAGE.ASM *
* CR - MAIN.ASM *
* CMD DECODE - DECODER.ASM *
* ECHO1 - CONSOLE.ASM *
* GETCHARI - CONSOLE.ASM *
* MONSTAT - MAIN.ASM *
* STRING - MAIN.ASM *
* STRINGEND - MAIN.ASM *
* BUFFULLMSG - MESSAGE.ASM *

GLOBAL GETSTRING
EXTERNAL BS,BUFFIN, CR, CMD DECODE,ECHO1,GETCHARI
EXTERNAL MONSTAT, STRING, STRINGEND
EXTERNAL BUFFULLMSG, SPCE
EXTERNAL MESSAGE

GETSTRING:BSET.B #STRING,MONSTAT IS THIS A NEW STRING ?
BNE BUILD - NO, SKIP PTR INIT
BCLR.B #STRINGEND.ONSTAT - YES,CLR STRG END BIT
LEA BUFFIN+1,AO - YES, INIT STRING PTR

BUILD: BSR GETCHARI DO <- CHR FROM CRT
CMP.B #CR,DO IS CHAR A CR ?
BNE ADD STRING - NO, ADD CHAR TO STRG
BSET.B #STRINGEND,MONSTAT - YES,SET STRG END BIT
MOVE.W AO,DO - YES, DO <-- CURRENT

BUFFIN PTR
SUB.W #BUFFIN+1,DO - YES, CALC BUFFIN LEN
MOVE.B DO,BUFFIN - YES, BUFFIN(O)<-

BUFFIN LENGTH
BRA STRING EXIT - YES, EXIT

ADDSTRING: BSR ECHO1 ECHO CHAR TO CRT
BSR CONCAT ADD CHAR TO END OF STRG

STRING EXIT:RTS

92

CONCAT CONCATENATES THE CHAR ONTO THE END OF THE STRING

CONCAT: CMP.B #BS,DO IS INPUT CHAR A BACKSPACE?
BEQ BKSPACE - YES, GOT BACKSPACE
CMPA.L BUFFIN+63,AO IS BUFFIN FULL ?
BNE ADD TO STRING - NO, ADD BYTE TO STRING
LEA BUFFULLMSG,A5 - YES, SET UP POINTER

FOR MESSAGE
BSR MESSAGE - YES, SEND MSG TO CRT
BRA CONCAT EXIT - YES, NOW EXIT

ADDTOSTRING:MOVE.B DO, (AO)+ ADD BYTE TO STRING

BRA CONCATEXIT
BKSPACE: CMPA.L BUFFINAO IS BUFFIN PTR POINTING TO
* 1st BYTE ?

BEQ CONCATEXIT - YES, EXIT
SUBQ.W #1,AO - NO, BACKUP BUFFIN PNTR
LEA SPCE,A5
BSR MESSAGE

CONCAT EXIT:RTS
END

93

** ********

* GET ADDRESS CONVERTS THE START AND END ADDRESS TO HEX. *
** *****

* WRITTEN BY DR. LARRY ABBOTT *

* FILENAME: GET ADDR.ASM *

* VERSION 1.3 *
* REV. MODIFIED BY DATE DESCRIPTION *

* A DAVID M. SENDEK 30 SEPT 87 DOCUMENTATION UPGRADE*
******************** ***

* DEFINING MODULES OF EXTERNALLY DECLARED VARIABLES: *

* BUFFIN - MAIN.ASM *
* END ADDRESS - MAIN.ASM *
* HEX CONV - HEXCONV.ASM *
* HEX ERR - MAIN.ASM *
* MONSTAT - MAIN.ASM *
* HEXMSG - MESSAGE.ASM *
* MESSAGE - MESSAGE.ASM *
*** ************

GLOBAL GET ADDR
EXTERNAL BUFFIN, END ADDRESS,HEXCONV, HEXERR
EXTERNAL MONSTAT, HEXMSG, MESSAGE

GET ADDR: CLR.L D2 CLEAR HEX BUFFER
LEA 0,A2 CLEAR START ADDRESS
LEA 0,A3 CLEAR END ADDRESS
CLR D3
MOVE.B BUFFIN,D3 D3 <-- BUFFIN LENGTH
BLE EXIT EXIT IF NULL CMD STRING
SUBQ.W #1,D3 ADJUST FOR DBCC INST

START ADDR:MOVE.B (AO)+,DO DO <-- BUFFIN(I) &
* I <- I + 1

CMP.B #',',DO IS CHAR IN DO A COMMA ?
BEQ STORESTART - YES, INDICATE END OF

START ADDRESS
BSR HEXCONV CONVERT 1 CHAR OF START

ADDR TO HEX
BTST.B #HEXERR,MONSTAT WAS THERE AN HEX

CONVERSION ERROR ?
BNE ADDR ERR - YES, EXIT ROUTINE
DBF D3,START ADDR IF MORE CHARACTERS CONT

STORESTART:SUBQ.W #1,D3 ADJUST LENGTH FOR COMMA
MOVE.L D2,A2 STORE START ADDRESS IN A2
CLR.L D2 CLEAR HEX BUFFER

* D3 CONTAINS THE LENGTH OF THE REMAINING COMMAND LINE

TST.W D3 IS BUFFIN LENGTH < 0 ?
BMI ADDREXIT - YES,EXIT WITH END.ADDR=O

94

ENDADDR:MOVE.B (AO)+,DO DO <-- BUFFIN(I, & I <- I+l
BSR HEXCONV CONVERT 1 CHAR OF END

ADDR TO HEX
BTST.B #HEXERR,MONSTAT WAS THERE AN HEX

CONVERSION ERROR ?
BNE ADDR ERR - YES, EXIT ROUTINE
DBF D3,END ADDR IF MORE CHARS CONTINUE
MOVE.L D2,A3 ELSE STR END ADDR IN A3

ADDREXIT MOVE.L A3,END ADDRESS SAV END ADR IN MEM
BRA EXIT

ADDRERR LEA HEXMSG,A5
BSR MESSAGE

EXIT RTS
END

95

* THIS PROGRAM CONTAINS A GROUP OF CONSOLE UTILITIES. *

* WRITTEN BY LARRY ABBOTT JAN. 1986 *

* FILENAME: 10 UTIL.ASM *
* ** ** ** * * ** ********** ************************ ****************

* VERSION 1.3
* REV. MODIFIED BY DATE DESCRIPTION *
* A DAVID M. SENDEK 30 SEPT 87 -DOCUMENTATION UPGRADE *

* -CORRECT FOR 68681 *

* DEFINING MODULES OF EXTERNALLY DECLARED VARIABLES: *

* BS - MAIN.ASM PORT1 - MAIN.ASM *
* CR - MAIN.ASM *
* ECHO1 - CONSOLE.ASM *
* ESC - CONSOLE.ASM *
* FWDARW - MAIN.ASM *
* GETCHARI - CONSOLE.ASM *
* LF - MAIN.ASM *
* RECFULL - MAIN.ASM *
* SRA - MAIN.ASM *
* SPACE - MAIN.ASM *

GLOBAL BACKSPACES,SCROLL, SCRLF, SPACES
EXTERNAL BS,CR, ECHOI,ESC, FWDARW, GETCHARI,LF
EXTERNAL RECFULL, SPACE
EXTERNAL SRA,PORTI

* BACKSPACES MOVES THE CURSOR ON THE CRT TO THE LEFT
* N TIMES

BACKSPACES:SUBQ.W #1,D2 ADJ INDEX FOR THE # OF BK SP
BKSPACE: MOVE.B #BS,DO DO <- ASCII CODE FOR BACKSPACE

BSR ECHO1 OUTPUT BACKSPACE TO CONSOLE
DBF D2,BKSPACE IF MORE BCKSP LOOP TO BK SPACE
RTS

SCRLF SEND A CARRIAGE RETURN AND A LINEFEED
* TO THE CONSOLE

SCRLF: MOVE.B #CR,DO DO <-- ASCII CODE FOR CR
BSR ECHO1 OUTPUT CR TO CONSOLE
MOVE.B #LF,DO DO <-- ASCII CODE FOR LF
BSR ECHO1 OUTPUT LF TO CONSOLE
RTS

96

* SPACES MOVE THE CURSOR ON THE CRT TO THE RIGHT N TIMES

SPACES: SUBQ.W #1,D2 ADJUST INDEX FOR THE # OF SP
SPACELOOP:MOVE.B #SPACE,DO ASCII CODE FOR ' '

BSR ECHO1 OUTPUT SPACE TO CONSOLE
DBF D2,SPACELOOP IF MORE SPACES LOOP TO SPACE
RTS

* SCROLL ALLOWS THE SCREEN SCROLL TO BE ABORTED BY AN ESC
* OR STOPPED AND STARTED BY ANY OTHER KEY

SCROLL: LEA PORT1,A4
BTST.B #RECFULL,SRA(A4) GET CONSOLE STATUS
BEQ.S SCROLLEXIT IF NO CHAR FROM

CONSOLE,EXIT
BSR GETCHARI ELSE GET CHAR
CMP.B #ESC,DO IS THE CHAR AN ESC?
BEQ.S SCROLLEXI - YES, ABORT

PAUSECHK:LEA PORT1,A4
BTST.B #RECFULL,SRA(A4) GET CONSOLE STATUS
BEQ.S PAUSE CHK IF NO NEW KEY STROKE, WAIT
BSR GETCHAR1 ELSE GET CHAR

SCROLL EXIT:RTS
END

97

** *********

* THIS PROGRAM DECODES COMMANDS FROM THE COMMAND LINE. *

* 68K MONITOR VERSION 1.3 *

* WRITTEN BY DR. LARRY ABBOTT NOV. 7, 1986 *
*************** **

* FILENAME: DECODER.ASM *

* VERSION 1.3 *

* REV. MODIFIED BY DATE DESCRIPTION *

* A DAVID M. SENDEK 1 OCT 87 DOCUMENTATION UPGRADE *

* DEFINING MODULES OF EXTERNALLY DECLARED VARIABLES: *
* BUFFIN - MAIN.ASM BKPT LIST - STUB.ASM *

* ERRMSG - MESSAGE.ASM DOWNLOAD - DOWNLOAD.ASM *

* FOUND - MAIN.ASM GO - GO.ASM *

* MESSAGE - MESSAGE.ASM MEM DISPLAY - MEM LIST.ASM *

* MONSTAT - MAIN.ASM MEM MODIFY - MEM LIST.ASM *

* NULL - MAIN.ASM NO BKPT - STUB.ASM *

* SPACE - MAIN.ASM REG - REG.ASM *

* SCRLF - 10 UTIL.ASM REGCHANG - REGCHANG.ASM *

* BKPT - GO.ASM *

* COMMAND FORMATS: *
* LEGEND : <.. > - OPTIONAL *

* { . - SELECT ONE ITEM *

* xx - NUMBER 0 -> 15 *

* NOTE : ALL ADDRESSES AND VALUES IN HEX *

BREAK POINT - BR (NOT IMPLEMENTED)
*NO BREAKPOINT - NOBR (NOT IMPLEMENTED) *

* DOWNLOAD - LOAD *

* GO - GO address <,break point address> *

* MEMORY MODIFY - MM start address <,end address> *

* MEMORY DISPLAY - MD start address <,end address> *

* REGISTER CHANGE - RCH { Axx,Dxx,PC,US,SP,SR} value *

* DISPLAY REGISTERS- REG *

GLOBAL CMD DECODE
EXTERNAL BUFFIN,ERRMSG,FOUND,MESSAGE,MONSTAT,NULL
EXTERNAL SPACE, SCRLF
EXTERNAL BKPT, BKPT_LIST, DOWNLOAD, GO
EXTERNAL MEMDISPLAY,MEMMODIFY,NOBKPT,REG, REGCHANG

CMDDECODE: LEA COMMANDS,A1 INITIALIZE COMMAND POINTER
BCLR #FOUND,MONSTAT

DECODEINIT:LEA BUFFIN+1,A0 INITIALIZE BUFFIN POINTER
MOVE.L #3,D1 INIT INDEX FOR 4 CHARS

98

SCAN: MOVE.B (AI)+,DO GET COMMAND.TABLE(I)
* & I<--I+l

CMP.B #SPACE,DO IS CHARACTER A SPACE ?
BEQ FOUNDCMD - YES, FOUND COMMAND
CMP.B #NULL,DO IS CHARACTER A NULL ?
BEQ NOCMD - YES, EXHAUSTED COM TABLE
CMP.B (AO)+,DO IS BUFFIN = COMMAND.TABLE ?
DBNE DI,SCAN - YES & MORE CHAR, CONT
BNE ADDRFIELD - NO, ADJUST ADDR FOR NEXT

* COMMAND
FOUND CMD: BSET #FOUND,MONSTAT SET COMMAND FND STATUS BIT

CMPI.W #O,Dl IS COMMAND A 4 CHAR COM?
BMI CMD FOUND - YES,SKIP "JUMP ADDRESS"

* ADJUST
ADDRFIELD: ADDQ.L #2,DI ADJUST INDEX FOR NEXT COM

ADD.L Dl,Al ADD INDEX TO COMMAND PNTR
BCLR #FOUND,MONSTAT CLEAR COM FOUND STATUS BIT
BEQ DECODEINIT CHECK NEXT CMD
SUB.L #5,Dl
ADD.B DI,BUFFIN ADJUST BUFFIN LENGTH
SUBQ.L #2,Al ADJUST ADDRESS FOR JUMP

CMDFOUND: MOVE.W (Al),Al GET JUMP ADDRESS
JSR (Al) JUMP TO COMMAND
BRA DECODEXT EXIT DECODER

NOCMD: BSR SCRLF
MOVE.W #ERRMSG,A5 SET MESSAGE POINTER
BSR MESSAGE PRINT ERROR MESSAGE TO CRT

DECODEXT: RTS

EVEN ON
COMMANDS: BYTE 'BR '

WORD BKPT LIST
BYTE 'LOAD'
WORD DOWNLOAD
BYTE 'GO
WORD GO
BYTE 'MD
WORD MEM DISPLAY
BYTE 'MM '

WORD MEM MODIFY
BYTE 'NOBR'
WORD NO BKPT
BYTE 'RCH '
WORD REGCHANG
BYTE 'REG '

WORD REG
BYTE NULL,NULL, NULL, NULL

EVEN OFF
END

99

* THIS PROGRAM CONVERTS A BYTE INTO 2 ASCII CHARACTERS AND *
* IT SENDS THE CHARACTERS TO THE CRT DISPLAY. *

* WRITTEN BY DR. LARRY ABBOTT *
*** ********** ******

* FILENAME: BYTEOUT.ASM *

* VERSION 1.3 *
* REV. MODIFIED BY DATE DESCRIPTION *
* A DAVID M. SENDEK 1 OCT 87 DOCUMENTATION UPGRADE *

* DEFINING MODULES OF EXTERNALLY DECLARED VARIABLES *
* ECHO1 - CONSOLE.ASM *

GLOBAL OUTPUT BYTE
EXTERNAL ECHO1

OUTPUT BYTE:MOVE.B DO,D2 MAKE A TEMPORARY COPY OF BYTE
LSR.B #4,DO SHIFT M.S. NIBBLE TO L.S. NIBBLE
BSR ASCONV CONVERT M.S. NIBBLE TO ASCII
MOVE.B D2,DO DO <-- TEMPORARY COPY OF BYTE
ANDI.B #$0FDO MASK OFF M.S. NIBBLE
BSR ASCONV CONVERT L.S. NIBBLE TO ASCII
RTS

ASCONV: ADDI.B #$30,DO ADD ASCII BASE
CMP.B #$3A,DO IS NUMBER 0-9 ?
BLT ASCOUT - YES, OUTPUT TO CONSOLE
ADDQ.B #7,DO ADJUST FOR A - F (HEX)

ASCOUT: BSR ECHO1 OUTPUT TO CONSOLE
RTS
END

100

** **** *******

* THIS PROGRAM MODIFIES OR LISTS THE CONTENTS OF THE *

* SPECIFIED MEMORY LOCATIONS. *

* WRITTEN BY DR. LARRY ABBOTT *

* FILENAME: MEM LIST.ASM *
************** ***** ************************************** ****

* VERSION 1.3 *
* REV. MODIFIED BY DATE DESCRIPTION *

* A DAVID M. SENDEK 1 OCT 87 DOCUMENTATION UPGRADE *
** *

* DEFINING MODULES OF EXTERNALLY DECLARED VARIABLES: *

* BUFFIN - MAIN.ASM MONSTAT - MAIN.ASM *
* BACKSPACES - 10 UTIL.ASM OUTPUT BYTE - BYTEOUT.ASM *
* END ADDRESS - MAIN.ASM SCRLF - 10 UTIL.ASM *
* ESC - MAIN.ASM SCROLL - 10 UTIL/ASM *
* GET ADDR - GET ADDR.ASM SPACE - MAIN.ASM *
* GETSTRING - GETSTRIN.ASM SPACES - IO UTIL.ASM *
* HEX CONV - HEXCONV.ASM STRINGEND - MAIN.ASM *
* HEX ERR - MAIN.ASM STRING - MAIN.ASM *
* MODIFY - MAIN.ASM *

GLOBAL MEM DISPLAY,MEM MODIFY
EXTERNAL BUFFIN, BACKSPACES,END ADDRESS,ESC
EXTERNAL GETADDR,GETSTRING,HEX_CONV,HEXERR,MODIFY
EXTERNAL MONSTAT, OUTPUT BYTE, SCRLF,SCROLL, SPACE, SPACES
EXTERNAL STRINGEND, STRING

MEMMODIFY:BSET.B #MODIFY,MONSTAT SET MODIFY FLAG
BSR MEM DISPLAY DISPLAY MEMORY
BCLR.B #MODIFY,MONSTAT CLEAR MODIFY FLAG
RTS

* THIS PROGRAM LIST THE CONTENTS OF THE SPECIFIED

MEMDISPLAY:CMPI.B #SPACE, (AO) DOES BUFFIN(I)
* CHAR = SPACE?

BNE START ADDR - NO, GET START & END
* ADDRESS

ADDQ.W #1,AO - YES, SO I <-- I+l
SUBQ.B #1,BUFFIN DECREMENT BUFFIN LENGTH
BRA MEM DISPLAY CONT SCANNING BUFFIN

STARTADDR: BSR GET ADDR CONVERT ADDRS TO HEX
BCLR.B #HEX ERR,MONSTAT WAS THERE AN HEX ERROR ?
BNE MD EXIT - YES, SO EXIT

NEWLINE: BSR SCRLF MOVE CURSOR TO NEXT LINE
BSR LINENUMBER DISPLAY LINE ADDRESS

101

GETABYTE: MOVE.B (A2)+,DO DO <-- (START ADDRESS)
BSR OUTPUT BYTE OUTPUT BYTE TO CRT
BTST #MODIFY,MONSTAT IS MEMORY MODIFY STATUS

BIT SET ?
BEQ WORD SPACE - NO, SKIP CHANGE
BSR CHANGE - YES, MODIFY MEMORY
BCLR.B #HEXERR,MONSTAT CLR HEX STATUS BIT ERROR
BNE MD EXIT IF ERROR EXIT

WORD SPACE: MOVE.W #2,D2 SETUP FOR 2 SPACES
BSR SPACES OUTPUT 2 SPACES TO CRT
MOVE.L END ADDRESS,D1 GET END ADDRESS
MOVE.L A2,D0 DO <- START ADDRESS
SUB.L DO,Dl DI<--END ADDR-START ADDR
BLT MD EXIT IF START > END THEN EXIT
ANDI.B #$OF,DO DOES L.S. NIBBLE = 0 ?
BNE GETABYTE - NO, GET ANOTHER BYTE
BSR SCROLL SCROLL PAUSE CHECK
CMP.B #ESC,DO ABORT SCROLL ?
BEQ MD EXIT - YES, SO EXIT
BRA NEWLINE - NO, START A NEW LINE

MDEXIT: BSR SCRLF MOVE CURSOR TO NEXT LINE
RTS

LINENUMBER:MOVE.L A2,DO GET CURRENT ADDRESS
ROR.L #8,DO MOVE M.S. BYTE TO L.S. BYTE
BSR OUTPUT BYTE DISPLAY BYTE ON CRT
ROR.L #8,DO MOVE M.S. BYTE TO L.S. BYTE
BSR OUTPUTBYTE DISPLAY BYTE ON CRT
ROR.L #8,DO MOVE M.S. BYTE TO L.S. BYTE
BSR OUTPUTBYTE DISPLAY BYTE ON CRT
ROR.L #8,DO MOVE M.S. BYTE TO L.S. BYTE
BSR OUTPUT BYTE DISPLAY BYTE ON CRT
MOVE.W #4,D2 SETUP FOR 4 SPACES
BSR SPACES OUTPUT 4 SPACES TO CRT
RTS

CHANGE: MOVE.W #2,D2 SETUP FOR 2 BCKSPCES
BCLR.B #STRING,MONSTAT SET FOR NEW STRING

CHGAGIN: BSR BACKSPACES MOVE 2 SP TO THE LEFT
MORECHAR:BSR GETSTRING GET ANY NEW CHARACTERS

BCLR.B #STRINGEND,MONSTAT CHECK FOR END OF STR
BEQ MORE CHAR IF MORE STRING, BRANCH
MOVE.B BUFFIN,D3 GET STRING LENGTH
BEQ NOENTRY IF STR LEN=O

THEN NO ENTRY

CMPI.B #2,D3 DOES STRING LEN = 2 ?
BNE CHGAGIN - NO, THEN RE-ENTER
BSR GET DATA CONVERT BYTE TO HEX
BTST.B #HEX ERR,MONSTAT IS THERE A HEX ERROR ?
BNE CHG EXIT - YES, EXIT
MOVE.B D2,-(A2) BUFFIN(I) <-- HEX
ADDQ.W #1,A2

102

NOENTRY: CLR.W D2
MOVE.B D3,D2 GET STRING LENGTH
NEG.W D2 Dl <- -(STRING LENGTH)
ADDQ.W #4,D2 ADJUST SPACE COUNT
BSR SPACES SPACE TO END OF BYTE

CHGEXIT RTS

GET DATA CLR.L D2 CLEAR HEXBUF
CLR D4 CLR WORD FOR DBCC INDEX
MOVE.B BUFFIN,D4 GET BUFFIN LENGTH
SUBQ #1,D4 ADJUST FOR DBCC INST
LEA BUFFIN+I,AO INITIALIZE BUFFING PNTR

DATALOOP MOVE.B (AO)+,DO GET CHAR FROM BUFFIN
3SR HEX CONV CONV ASCII CHAR TO HEX
BTST.B #HEX ERR,MONSTAT IS THERE A HEX ERR ?
DBNE D4,DATALOOP IF MORE CHARS,

THEN LOOP AGAIN

DATAEXIT RTS
END

103

* THIS PROGRAM CONVERTS THE CONTENTS OF D0<7..0> FROM *

* ASCII TO HEX AND STORES THE RESULT IN REG D2. *

* WRITTEN BY DR. LARRY ABBOTT *

* FILENAME: HEXCONV.ASM *

* VERSION 1.3 *
* REV. MODIFIED BY DATE DESCRIPTION *
* A DAVID M. SENDEK 1 OCT 87 DOCUMENTATION UPGRADE *

* DEFINING MODULES OF EXTERNALLY DECLARED VARIABLES: *

* HEX ERR - MAIN.ASM *
* MONSTAT - MAIN.ASM *

GLOBAL HEX CONV
EXTERNAL HEXERR,MONSTAT

HEX CONV: SUB.B #$30,DO ADJUST ASCII TO
* HEX BASE

CMPI.B #9,D0 IS CHARACTER <= 9 ?
BLS.S ZERO CHECK - YES, CHECK >= 0
SUB.B #7,D0 ADJUST FOR A-F
CMPI.B #$A,DO IS CHARACTER >= A ?
BCS.S HEXERR - NO, HEX ERROR
CMPI.B #$F,DO IS CHARACTER <= F ?
BHI.S HEXERR - NO, HEX ERROR

ZEROCHECK:CMPI.B #0,DO IS CHARACTER >= 0 ?
BMI.S HEXERR - NO, HEX ERROR
BSR HEXSHIFT HEX # INTO

* HEX BUFFER
BCLR.B #HEXERR,MONSTAT CLR HEX CONVERSION

* ERROR STATUS BIT
BRA.S HEX EXIT EXIT HEX CONVERSION

HEXERR: BSET.B #HEX_ERR,MONSTAT SET HEX CONVERSION ERROR
* STATUS BIT
HEXEXIT: RTS

HEX SHIFT: LSL.B #4,DO SHIFT L.S. NIBBLE TO M.S. NIBBLE
MOVE.W #3,DI SET FOR INDEX TO 4 SHIFTS

NIBBLESHF:LSL.B #1,DO SHIFT HEX CHARACTER OUT
ROXL.L #1,D2 SHIFT INTO HEX BUFFER
DBF DI,NIBBLE SHF BRANCH IF MORE BITS
RTS
END

104

* THE GO ROUTINE EXECUTES A PROGRAM FROM THE MONITOR. *

* THE FORMAT IS: *

* GO <start address>, [optional breakpoint] *

* WRITTEN BY DR. LARRY ABBOTT *

* FILENAME: GO.ASM *

* VERSION 1.3 *
* REV. MODIFIED BY DATE DESCRIPTION *

* A DAVID M. SENDEK 1 OCT 87 DOCUMENTATION UPGRADE *

* B DAVID M. SENDEK 5 OCT 87 BSET,BCLR ASSEMBLY *

* LANGUAGE CORRECTION *

* DEFINING MODULES OF EXTERNALLY DECLARED VARIABLES: *

* BKPTAB - MAIN.ASM ILLMSG - MESSAGE.ASM *
* BKPTMSG - MESSAGE.ASM MESSAGE - MESSAGE.ASM *
* BTLEN - MAIN.ASM MONSTAT - MAIN.ASM *
* BUFFIN - MAIN.ASM OUTPUT BYTE - BYTEOUT.ASM *
* CONTINUE - MAIN.ASM SCRLF - 10 UTIL.ASM *
* CMD DECODE - DECODER.ASM SPACE - MAIN.ASM *
* GET ADDR - GET ADDR.ASM STRING - MAIN.ASM *
* GETSTRING - GETSTRIN.ASM STRINGEND - MAIN.ASM *
* HEX ERR - MAIN.ASM SYSTAX - MAIN.ASM *

GLOBAL BKPT,GO
EXTERNAL BKPTAB,BKPTMSG,BTLEN, BUFFIN, CONTINUE
EXTERNAL GET ADDR, GETSTRING, IIEX ERR, ILLMSG, MESSAGE
EXTERNAL OUTPUT BYTE, SCRLF, SPACE, STRING, STRINGEND
EXTERNAL MONSTAT, SYSTAX, CMDDECODE

*w

TRAPO EQU $4E40 OP CODE FOR TRAP #0

GO CMPI.B #SPACE, (AO)+ IS BUFFIN(X) A SPACE ?
BNE GO ADDR - NO, GET GO ADDRESS
SUBQ.B #1,BUFFIN - YES, ADJUST BUFFIN LENGTH
BRA GO - YES, SCAN FOR NEXT SPACE

GOADDR SUBQ #1,AO ADJUST FOR POST INCREMENT
BSR GET ADDR A2<-GO ADDR, A3<-BREAKPOINT
CMPA #0,A2 IS THERE A START ADDRESS ?
BEQ CONTINU - NO,THIS IS A CONTINUATION
BCLR.B #4,MONSTAT CHECK FOR HEXCONV ERROR
BNE GO EXIT IF HEX ERROR THEN EXIT
MOVEA.L SYSTAX,AO ELSE GET SYSTAX POINTER
MOVE.L A2, (AO) SYSTAX(PC) <-- GO ADDRESS
CMPA #0,A3 IS THERE A BREAKPOINT ?
BEQ GO EXIT - NO, SO EXIT
LEA BKPTAB,AO SET BREAK TAB POINTER
MOVEA.L A3, (AO) STORE BREAKPOINT IN TABLE
MOVE.W (A3),BTLEN(AO) STORE INSTRUCTION AT BKPT

105

MOVE.W #TRAPO, (A3) STORE ILL INSTRUCT AT BKPT
CONTINU:BSET.B #CONTINUE,MONSTAT SET CONTINUE FLAG
GO EXIT RTS

* THE BREAKPOINT (BKPT) ROUTINE RESTORES THE INSTRUCTION
* AT THE BREAKPOINT
*

BKPT: BCLR.B #CONTINUE,MONSTAT INIT CONTINUATION FLAG
LEA BKPTAB,AO SET BREAK TABLE POINTER
MOVE.L (AO),A3 GET BKPT ADDRESS
MOVE.W 16(AO), (A3) RESTORE INSTRUCTION
LEA BKPTMSG,A5 SET BREAKPOINT MESSAGE

BADINST BSR MESSAGE PRINT MESSAGE
MOVE.L A3,DO GET BKPT ADDRESS
MOVE.W #3,D3 SET BYTE INDEX

ADDROUT ROL.L #8,DO ROTATE DO BY 1 BYTE
BSR OUTPUTBYTE CRT <-- DO<O..7>
DBF D3,ADDROUT MORE ADDRESS THE LOOP
BSR SCRLF MOV CURSOR TO STRT OF LINE
SUBQ.L #2,2(SP) ADJUST RETURN ADDRESS
MOVE.L SP,SYSTAX SAVE POINTER TO RETURN ADDR

EXAMINE BSR GETSTRING ALLOWS EXAM AT BKPT
BCLR.B #STRINGEND,MONSTAT END OF STRING ?
BEQ EXAMINE - NO, SO LOOP
BCLR.B #STRING,MONSTAT CLEAR NEW STRING FLAG
BSR CMD DECODE IF END THEN DECODE
BCLR.B #CONTINUE,MONSTAT IS THIS A CONTINUATION ?
BEQ EXAMINE - YES, LOOP AGAIN
RTE
END

106

* THIS FILE CONTAINS PROGRAMMING STUBS TO COMPLETE THE *
* LINKING PROCESS WHILE BUILDING AND TESTING HIGHER *
* LEVEL MODULES. *
*** ******** *** ** *** ****

* WRITTEN BY DR. LARRY ABBOTT *
** **** ***

* FILENAME: STUB.ASM *

* VERSION 1.3 *

* REV. MODIFIED BY DATE DESCRIPTION *

* A DAVID M. SENDEK 1 OCT 87 -DOCUMENTATION UPGRADE *
* -INCORPORATE PROMPT MSG *

* DEFINING MODULES OF EXTERNALLY DECLARED VARIABLES: *
* PROMPT - MESSAGE.ASM *
* MESSAGE - MESSAGE.ASM *
******************************* ***** **** ***** ** *** ** *** * *** *

GLOBAL BKPT LIST,NO BKPT
EXTERNAL PROMPT,MESSAGE

BKPTLIST:LEA PROMPT,A5
BSR MESSAGE
RTS

NOBKPT: LEA PROMPT,A5
BSR MESSAGE
RTS
END

107

********************************* ****************** ** * ****** *

* THIS ROUTINE PRINTS OUT THE CONTENTS OF THE REGISTERS. *

* WRITTEN BY DR. LARRY ABBOTT *

* FILENAME: REG.ASM *
** *** **** *** *

* VERSION 1.3 *

* REV. MODIFIED BY DATE DESCRIPTION *

A DAVID M. SENDEK 1 OCT 87 DOCUMENTATION UPGRADE *
** * **** ***** *

* DEFINING MODULES OF EXTERNALLY DECLARED VARIABLES: *
* MESSAGE - MESSAGE.ASM SCRLF - 10 UTIL.ASM*
* OUTPUT BYTE - BYTEOUT.ASM SPACES - 10 UTIL.ASM*
* REGMSG - MESSAGE.ASM SYSTAX - MAIN.ASM *

GLOBAL REG
EXTERNAL MESSAGE,OUTPUT BYTE,REGMSG
EXTERNAL SCRLF, SPACES, SYSTAX

REG BSR SCRLF
LEA FEGMSG,A5 GET POINTER TO MESSAGE
MOVEA.L SYSTAX,A2 GET STACK POINTER AT MONITOR

* ENTRY
SUB.L #$40,A2 OFFSET OF THE STACK

MOVE.W #15,D3 SET REGS CNTR FOR 16 REGS
REGLIST BSR MESSAGE PRINT PART OF REGISTER MESSAGE

MOVE.W #3,D4 SET FOR 32-BIT REGISTER
BSR REG DUMP PRINT CONTENTS OF A REGISTER
DBF D3,REGLIST IF MORE REGS, THEN GO TO

REGLIST
BSR MESSAGE PRINT "SR ="
MOVE.W #1,D4 SET FOR 16-BIT REGISTER
BSR REG DUMP PR CONTENTS OF STAT REG (SR)
MOVE.W #4,D2 SET FOR 4 SPACES
BSR SPACES PRINT 4 SPACES
BSR MESSAGE PRINT "PC ="
MOVE.W #3,D4 SET FOR 32-BIT PC REGISTER
BSR REG DUMP PRINT CONTENTS OF PC REGISTER
MOVE.W #1,D2 SET FOR 1 SPACES
BSR SPACES PRINT 1 SPACES
BSR MESSAGE PRINT "(PC) ="

SUBQ.L #4,A2
MOVE.L (A2),A2
MOVE.W #I,D4 SET FOR WORD POINTED TO BY PC
BSR REG DUMP PRINT CONTENTS OF WD PNTD BY PC
BSR SCRLF FORMAT DISPLAY
RTS

108

REG-DUMP MOVE.B (A2)+,DO GET A BYTE OF THE REG
* FROM APPLICATION PSW

BSR OUTPUT BYTE OUTPUT BYTE TO CONSOLE
DBF D4,REGDUMP IF MORE BYTES THEN REG DUMP
RTS ELSE EXIT
END

109

* THIS ROUTINE CHANGES THE CONTENTS OF DESIRED REGISTERS. *

* WRITTEN BY DR. LARRY ABBOTT *
*** **********

* FILENAME: REGCHANG.ASM *

* VERSION 1.3 *
* REV. MODIFIED BY DATE DESCRIPTION *

* A DAVID M. SENDEK 1 OCT 87 DOCUMENTATION UPGRADE *
*********************k******************************** ********

* DEFINING MODULES OF EXTERNALLY DECLARED VARTABLES: *
* BUFFIN - MAIN.ASM MONSTAT - MAIN.ASM *
* GETADDR - GETADDR.ASM REG - REG.ASM *
* REGERR - MESSAGE.ASM *
* HEX CONV - HEXCONV.ASM SPACE - MAIN.ASM *
* HEX ERR - MAIN.ASM SYSTAX - MAIN.ASM *
* MESSAGE - MESSAGE.ASM SCRLF - 1O UTIL.ASM *

GLOBAL REGCHANG
EXTERNAL BUFFIN,GETADDR,HEX CONV,HEX ERR
EXTERNAL MESSAGE,MONSTAT,REG, REGERR,SPACE,SYSTAX, SCRLF

ESC EQU $1B
*

REGCHANG: BSR REG DISPLAY REGISTERS ON CRT
BLANKSCAN:MOVE.B (AO) +,DO

SUBQ.B #1,BUFFIN DECREMENT BUFFIN LENGTH
CMPI.B #SPACE,DO DOES BUFFIN(I) CHAR = SPACE ?
BNE START REG - NO, GET START AND END ADDR
BRA BLANKSCAN CONTINUE SCANNING BUFFIN

START REG:CMPI.B #ESC,DO DOES DO = ESC (ASCII) ?
BEQ REG DONE - YES, RTS
CMPI.B #'AT DO DOES DO = 'A' ?
BEQ REGA - YES, ADJUST POINTER
CMPI.B #'D',DO DOES DO = 'D' ?
BEQ REGD - YES, ADJUST POINTER
CMPI.B #'P',DO DOES DO = 'P' ?
BEQ REGP - YES,CK FOR 'C' & ADJUST PNTR
CMPI.B #'U',DO DOES DO = 'U' ?
BEQ REGU - YES, CHECK FOR 'S'
CMPI.B #'S',DO DOES DO = 'S' ?
BNE PRINTERR - NO,PRINT ERR DO <> AD,P,U,S
MOVE.B (AO)+,DO GET SECOND CHAR OF CCMMAND LINE
SUBQ.B #1,BUFFIN SUBTRACT 1 FROM BUFFIN
CMPI.B #'P',DO
BEQ RE3SP
CMPI.B #'R',DO
BEQ REGREP
CMPI.B #'S',DO

110

BNE PRINTERR
MOVE.L #-4,D3
BRA REGREP

REGA: MOVE.L #-32,D3
BRA REGFIN

REGD: MOVE.L #-64,D3
BRA REGFIN

REGP: MOVE.B (AO)+,DO
SUBQ.B #l,BUFFIN
CMPI.B #'C',DO
BNE PRINTERR
MOVE.L #2,D3
BRA REGREP

REGU: MOVE.B (AO)+,DQ
SUBQ.B #1,BUFFIN
CMPI.B #'S',DO
BNE PRINTERR
MOVE.L #-4,D3
BRA REGREP

REGSP: MOVE.L, #-4,DO
BRA REGREP

PRINTERR: LEA REGERR,A5
BSR MESSAGE
BRA REGDONE

REGFIN: MOVE.B (AO)-',DO
SUIIQ.B #1,BUFF.N
CLR.L D2
BSR HEX CONV
BTST.B #HEXERR,MONSTAT
BNE PRINTERR
LSL.L #2,D2
ADD.L D2,D3

REGREP: LEA SYSTAX,Al
MOVE.L (A1),A1
ADD.L D3,Al

RCA: CMPI.B #SPACE, (AO)
BNE FFF
ADDQ.W #l,AO
SUBQ.B #l,BUFFIN
BRA RCA

FFF: BSR GETADDR
MOVE.L A2, (Al)
BSR REG

REG-DONE: RTS

* DOWNLOAD ALLOWS THE MONITOR TO DOWNLOAD Sxx RECORDS TO ITS*
* RESIDENT 68OXX MICROCOMPUTER OVER A SECOND RS-232 PORT. *
*** ********

* WRITTEN BY DR. LARRY ABBOTT APRIL 24, 1986 *
** ***** ** ******

* FILENAME: DOWNLOAD.ASM *
** ***** ****

* VERSION 1.3 *

* REV. MODIFIED BY DATE DESCRIPTION *

* A LARRY ABBOTT 12/18/86 INIT DEBUG PROCESS *
* B DAVID M. SENDEK 1 OCT 87 -DOCUMENTATION UPGRADE *
* -CORRECT FOR MC68681 *

* C DAVID M. SENDEK 5 OCT 87 BCLR,BSET ASSEMBLY *
* LANGUAGE CORRECTION *

* D DAVID M. SENDEK 4 JAN 88 -CORRECT DOWNLOADING OF *
* SI,$9 FORMAT RECORDS. *

* NOTE:FINAL S9 RECORD WILL*
* HAVE A '*' AFTER LAST *

* CHARACTER IN THE RECORD *

* DEFINING MODULES OF EXTERNALLY DECLARED VARIABLES: *
* CHECKSUM - MAIN.ASM CK SUM - MAIN.ASM *

* ECHO1 - CONSOLE.ASM ECHO2 - CONSOLE.ASM *

* EPROMRNG - MAIN.ASM EPROMSG - MESSAGE.ASM *

* EPROMWR - MAIN.ASM *

* HEX CONV - HEXCONV.ASM SCRLF - 10 UTIL.ASM *

* HEX ERR - MAIN.ASM SREC ERR - MESSAGE.ASM *

* HEXMSG - MESSAGE.ASM SCANCHR2 - CONSOLE.ASM *

* MESSAGE - MESSAGE.ASM SPACES - 10 UTIL.ASM *

* MONSTAT - MAIN.ASM SRB - MAIN.ASM *

* RECFULL - MAIN.ASM GETCHR2 - CONSOLE.ASM *

GLOBAL DOWNLOAD
EXTERNAL CHECKSUM,CKSUM, ECHOI,ECHO2,EPROMRNG, EPROMSG
EXTERNAL EPROMWR, ESCAPE
EXTERNAL HEXCONV,HEXERR,HEXMSG,MESSAGE,MONSTAT
EXTERNAL RECFULL,SCRLF,SRECERR
EXTERNAL SCANCHR2, SPACES
EXTERNAL SRB, GETCHR2

DOWNLOAD:BSR SCANCHR2 DO DUMMY RD TO CLR CHAN B
BTST.B #RECFULL,SRB ANY THING ELSE IN CHAN B ?
BNE.S DOWNLOAD - YES,SCAN CHANNEL B AGAIN
BSR SCRLF ECHO CR & LF TO CRT

DOWNLOOP:BCLR.B #HEX ERR,MONSTAT CLEAR HEX ERROR FLAG
SLOOP BSR GETCHR2 GET A CHAR FROM DWNLNK PORT

BTST.B #ESCAPE,MONSTAT ESC THE DOWNLOAD PROCESS ?
BNE DOWNEXIT - YES, EXIT

112

CMPI.B #'S',DO IS CHARACTER = 'S' '

BNE S LOOP - NO, SEARCH FOR A 'S'
BSR ECHO2 ECHO 'S' TO CONSOLE
MOVE.W #1,D3 SET FOR 16-BIT ADDR
BSR GETCHR2 GET A CHAR FROM DWNLNK PORT
BSR ECHO2 ECHO DWNLNK CHAR TO CONSOLE
CMPI.B #'O',DO IS THIS A SO RECORD ?
BEQ S RECORD - YES, GO TO S RECORD
CMPI.B #T',DO IS THIS A Sl RECORD ?
BEQ S RECORD - YES, GO TO S RECORD
CMPI.B #'9',DO IS THIS A S9 RECORD ?
BEQ S9 RECORD - YES, GO TO S9 RECORD
ADDQ.W #1,D3 SET FOR 24-BIT ADDR
CMPI.B #'2',DO IS THIS A S2 RECORD ?
BEQ S RECORD - YES, GO TO S RECORD
ADDQ.W #1,D3 SET FOR A 32-BIT ADDRESS
CMPI.B #'3',DO IS THIS A S3 RECORD ?
BEQ S RECORD - YES, GO TO S RECORD

LOADERR: LEA SRECERR,A5 IF NO Sxx RECORD
;THEN 'S RECORD ERROR' MSG

BSR ERRMSG

DOWNEXIT:BSR SCRLF ECHO CR & LF
LEA EPROMSG,A5 SET UP

* "ATTEMPTED WRITE TO EPROM"

BCLR.B #EPROMWR,MONSTAT WAS THERE A WRITE TO EPROM?
BEQ.S ERRMSG - YES, PRINT ERROR MESSAGE
RTS

ERRMSG: BSR MESSAGE PRINT ERROR MESSAGE
RTS

SRECORD:BSR SN RECORD PROCESS S RECORD
BCLR.B #HEX ERR,MONSTAT IF NOT HEX CONVERSION ERR
BEQ DOWNLOOP THEN GET NEXT RECORD
LEA HEXMSG,A5 ELSE HEX CONV ERROR MSG
BRA ERRMSG PRINT ERROR MSG

S9_RECORD:BSR SN RECORD PROCESS S RECORD
BTST.B #HEX ERR,MONSTAT IF HEX CONVERSION ERROR
BEQ DOWNEXIT THEN TERMINATE XMISSION
RTS

SNRECORD:CLR.W D6 SET FOR 1 BYTE
CLR.B CK SUM CLEAR CHECK SUM
BSR GETFIELD GET DOWNLOAD FIELD
BTST.B #HEX ERR,MONSTAT IF HEX CONVERSION ERROR
BNE.S SN EXIT THEN EXIT SN RECORD
MOVE.W D2,D4 D4<-HEXBUFFER (S REC LEN)
SUB.W D3,D4 LEN = (S REC LEN) - ADDR
SUBQ.W #2,D4 ADJST FOR DBF INST & ADDR
MOVE.W D3,D6 SET ADDRESS SIZE

113

BSR GETFIELD GET ADDRESS FIELD
BTST.B #HEX ERR,MONSTAT IF HEX CONVERSION ERROR
BNE.S SN EXIT THEN EXIT SN RECORD
MOVE.L D2,A0 AO <-- LOAD ADDRESS
BSR DOWNDATA GET DOWN LOAD DATA

SN EXIT RTS

DOWNDATA BSR GETCHR2 GET FIRST CHARACTER
BSR ECHO2 ECHO DWNLD CHARACTER

TO CONSOLE
CLR.L D2
BSR HEX CONV CONVERT CHAR TO HEX
BTST.B #HEX ERR,MONSTAT IF HEX CONVERSION ERROR
BNE.S DD EXIT THEN EXIT DOWN DATA
BSR GETCHR2 GET SECOND CHARACTER
BSR ECHO2 ECHO DWNLD CHAR TO CONSOLE
CMPA.L #EPROMRNG,AO IS THIS A WRITE TO EPROM?
BLS.S EPROMERR - YES, GO TO EPROMERR
BSR HEX CONV CONVERT CHARACTER TO HEX
MOVE.B D2, (AO) LOAD BYTE INTO MEMORY
BRA.S CHK SUM

EPROMERR BSET.B #EPROMWR,MONSTAT FLAG EPROM WRITE
CHKSUM ADDQ.L #1,AO INCREMENT MEM LOAD ADDR

TST.W D4 ARE NXT CHARS CHECK SUM ?
BEQ.S LOOP END - YES,DONT ADD TO CHK SUM
ADD.B D2,CK SUM ADD THIS BYTE TC CHK SUM

LOOPEND DBF D4,DOWN DATA IF MORE DATA THEN LOOP
NOT.B CK SUM COMPLEMENT CHECK SUM
MOVE.B -(A0),D2 GET COMPUTED CHECK SUM
CMP.B CKSUM,D2 COMP CALC'S AND

* XMIT CHK SUMS
BEQ.S ERRCHECK IF CHECK SUMS AGREE

THEN EXIT DOWNLOAD
MOVE.L MONSTAT,D3
BSET.L #CHECKSUM,D3 SET FLAG IF CHECK SUM ERR
MOVE.L D3,MONSTAT
BRA.S ERR MARK

ERRCHECK BTST.B #EPROMWR,MONSTAT A WRITE TO EPROM ?
BEQ.S DD EXIT - NO, EXIT

ERRMARK MOVE.W #'7',DO - YES, MARK ERROR WITH *
BSR ECHCI

DDEXIT BSR SCRLF ECHO CR & LF
RTS

GETFIELD CLR.L D2 CLEAR HEX BUFFER
LOOPINIT MOVE.W #1,D5 SET COUNT TO
* PACK 2 NIBBLES
GFLOOP BSR GETCHR2 GET DOWNLOAD CHARACTER

BSR ECHO2 ECHO DOWNLOAD CHARACTER
TO CONSOLE

BSR HEX CONV CONVERT ASCII CHAR TO HEX
BTST.B #HEX_ERR,MONSTAT IF HEX CONVERSION ERROR

114

BNE.S GF EXIT THEN EXIT GET FIELD

DBF D5,GF_LOOP GET SECOND NIBBLE
ADD.B D2,CK SUM COMPUTE CHECK SUM

DBF D6,LOOPINIT IF MORE CHARS THEN LOOP

GFEXIT RTS ELSE EXIT
END

115

* THIS ROUTINE IS VECTORED TO BY ALL EXCEPTIONS THAT *
* LACK A DEFINITE EXCEPTION SERVICE ROUTINE. *
*** ******* ***

* WRITTEN nY DR. LARRY ABBOTT *
*** *** *

* FILENAME: UNUSED.ASM *
** *********

* VERSION 1.3 *

* REV. MDDIFIED BY DATE DESCRIPTION *
* A DAVID M. SENDEK 1 OCT 87 -DOCUMENTATION UPGRADE *
* -INCORPORATE A PROMPT *
** ************ *

* DEFINING MODULES OF EXTERNALLY DECLARED VARIABLES: *
* OUTPUT BYTE - BYTEOUT.ASM MESSAGE - MESSAGE.ASM *
* REG - REG.ASM SCRLF - 10 UTIL.ASM *

* SYSTAX - MAIN.ASM USEMSG - MESSAGE.ASM *

* PROMPT - MESSAGE.ASM *

GLOBAL UNUSED
EXTERNAL OUTPUT BYTE,MESSAGE,REG, SCRLF, SYSTAX,USEMSG
EXTERNAL PROMPT

UNUSED:MOVEM.L SP,SYSTAX SAVE POINTER TO APPLICATION
* REGISTERS

MOVEM.L AO-A7/DO-D7,-(SP) SAVE ALL REGISTERS
BSR SCRLF MOVE CURSOR TO NEXT LINE
LEA USEMSG,A5 SET MSG POINTER TO MONMSG
BSR MESSAGE CRT<-UNUSED EXCEPTION MSG
MOVE.L SYSTAX,A5 GET TOP OF STACK AT ENTRY
ADDQ.L #6,A5 POINT TO STACK FORIMAT WORD
MOVE.B (A5)+,DO GET FORMAT.HIGH
BSR OUTPUT BYTE OUTPUT FORMAT.HIGH
MOVE.B (A5),DO GET FORMAT.LOW
BSR OUTPUT BYTE OUTPUT FORMAT.LOW
BSR SCRLF MOVE CURSOR TO NEXT LINE
BSR REG DISPLAY REGISTERS
MOVEM.L (SP)+,AO-A7/D0-D7 RESTORE ALL REGISTERS
RTE
END

116

APPENDIX C: MINIMAL SYSTEM DIAGRAMS

The figures (Figs. C.1 through C.8) contained in this appendix

are discussed in Chapter IV. These figures were created using the

OrCAD/SDT III computer-aided design (CAD) tool. Each signal's

source(s) and/or destination(s) are noted on the diagrams. It is,

however, the integration of these various components into a minimal

system that comprises the work that is original to this thesis.

117

C)

0

u >1

4-iC.)

.-U) e--

01

*e4-H C) -4

CE~~1 0.N 4-~ c

El.~~ 00UE4C
umC J ~ 4 -H -

E-~ 4LJ

+N

J-4 + N
.0

a4 +0

U~ +

U)

-E-

E-44

E~-H

4:J 4

N If) 4 -1

-40 CX
r.C

00

HH

41-

00

4 J4

(D 0-
a4 :3

ou
o1

Ut)i
C',

0 >1 00

0 .10

'.0 0
E-+-

11

w t o

U) ~ 0
C) Co U'-

A A A A
I I I4II II-

N N N N >.

-4 ,-4

--I.iNJ,,

0

F-) EU r-

E- U 44

0U0 a

04J~ E- l

+ CI i ..-tl

0 00

E-4 E- ZH

E- -

N 02

uI x

UU

0

T z

4O

- - - 120

0

(3)

Q)

a)

>11

z r4 W>1 (Ti

41l H

OCI) -4 C

- r-

0000 I U~~)E4 E-0~L

E~~~E E-~~ F

0 0 0 0 0 = a 0 >,E -4

0H E- U)

___ ___ __ ___ __ ___ _0 U E-

C)

0E--4-

'--N C/' 0-)Z

a)0-

121a.Q a

E-44

Ci41

-4 -4
(a .14

'N
-0 u

-4
C) (1) l-j

ao0o C, a ->1

-4j

u U m

-4

fu a)

OC) C

4 x N-4

Cl U) >~ "N -4

A~~ UU

'N >U)E) 00
COu0 0 0000

0 + :DzlE-CjW 44

co I I

122

0 0)

7:-

4 4 4 4 u - -C C - -C a0

4 1 1FILa3 o

I ** 'cIZ' Z2u0

00

0
M m

U') ~ ~ -EW 3 W 4

0 ('0 0 :r

0 40
Lr r4 -4 EL 1 1 1U1

123

: 44

-'K

C) U)

j.-q --4

-44

004

0- 4-4 --4
- -4C

4 04

>~~*c > - -1c

Cx4- 3-4-

-- 4 U -,1 4-

4 44 -4-

-4-- -1 C:

LtU)
OW +l U U)

.4 4~ -4 4j

a4 V4

uC EQ Cl) MU

0 0- 0 1

E

> ~ 0
U-))

+

124

)

-4
01)
L)

1-4

U>1
4 >4)

-
4

5-4U
0)U - 1-4

4- .4 E --4 --

-- 4 () :3 0) co~ t0
0)' 0 4-) >4 :

u 0) 0

0 4--) 4-1 a) 5->d-

w (1)) 4.,I >1

_40 0 0.-4 (-

-4 >-404

~ a~ r-0 a)) 0) r
:3 U -r4 4-1 > 0 ()x- 4 c

x.~ x)w 3)T -4) E-4E- 1-4

E-n E-4 -40)4 u)-
)~ --i)< X01i ~ ~ E-4 4 U) a)-4-

4J J4 1 - - E- X.-i-D 0 0-

C) " E-X r E =U -

0 00 0 00 W)CV) " 4 -

ci)II 4-1 41

Y , E-4 4~)0 0

0

au uu u Su rl

- 0 0 - * N N 0 0 0 0 ~ 0

%. -1 E-

'4 '4 0 4

'4 y

1) 5

APPENDIX D: MINIMAL SYSTEM'S PROGRAMMABLE LOGIC
DEVICE SOURCE CODE

In order to reduce the chip count, Altera EP310 erasable

programmable logic devices (EPLDs) were used within the minimal

system. Abel, a logic software design tool by Data I/O

Corporation, was used to program Altera EP310 EPLDs [Ref. 16:pp. 2-

57 - 2-62]. Abel files provides a high-level representation of the

logic to be implemented on the EP310s. The EP310 comes in a 20-pin

package. Nine pins are used strictly for input logic; one pin can

be used for input logic or as a clocked input; eight pins can be

used for input logic or output logic; the remaining two pins are

used for Vcc input and ground input.

The following Abel modules were implemented:

- minimal_systemaddress decoder
- dtack and buserror_generation
- output_enable write enable
- interrupt_controller

126

it

THIS FILE USES DATA I/O'S ABEL DESIGN LANGUAGE
TO GENERATE A JEDEC FILE TO PROGRAM AN ALTERA
EP310 ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD).

MODULE minimal system addressdecoder FLAG '-X0'

TITLE '68010 ADDRESS DECODER FOR THE MINIMAL SYSTEM'

u61 DEVICE 'E0310'; "Abel V2 must be used for this device.

"DEFINE LABELS ASSOCIATED WITH INPUT AND OUTPUT PINS
FOR THE EP310

- INPUT PINS
a12, a13, a14, al5, al6, a17, a18, a19, a20, a21, a22, a23,

as PIN 1,2,3,4,5,6,7,8,9,11,12,13,15;

- OUTPUT PINS
cs681,romen,sramen PIN 16,18,19;

"ASSIGNMENT STATEMENTS
h = 1; "HIGH
1 = 0; "LOW
x .X.; "DONT CARE

ramaddr = [a23,a22,a21,a20,a19, a18,a17,a16, al5,a14,
Xx, X, Xx, ,XXXxx, lX];

romaddr = [a23,a22,a21,a20,a19, al8, al7, a16, x, x, x, x,
XXXx X, X, X, X, X, X x, X] ;

duartaddr = [a23,a22,a21,a20,a19,al8,a17,al6,al5,a14,
al3, al2, x, x, x, x, x, x, x, x, x, xx, x];

"DEFINE EQUATIONS AS PER MEMORY MAP
it ! = INVERSION
if & = AND
t # = OR
EQUATIONS
sramen= (ramaddr >= ^h010000)&(ramaddr <= ^hOl3FFF)&!as;
!cs681= (duartaddr >= Ah7F7000)&(duartaddr <= ^h7F7FFF)&!as;
!romen = (romaddr <=^hOOFFFF)&!as;

END minimal_systemaddressdecoder

127

to

to THIS FILE USES DATA I/O'S ABEL DESIGN LANGUAGE
of TO GENERATE A JEDEC FILE TO PROGRAM AN ALTERA
to EP310 ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD).
to

MODULE dtack and bus errorgeneration FLAG '-X0'

TITLE 'DTACK AND BUS ERROR GENERATION FOR THE MINIMAL SYSTEM'

u64 DEVICE 'E0310'; "Abel V2 must be used for this device.

"DEFINE LABELS ASSOCIATED WITH INPUT AND OUTPUT PINS
of FOR THE EP310

- INPUT PINS
berr delay,romdelay,sramdelay,romen,

dtack681,sramen PIN 1,8,9,11,13,16;

- OUTPUT PINS
dtack,berr PIN 18,19;

"ASSIGNMENT STATEMENTS
h = 1; "HIGH
1 = 0; "LOW
x = .X.; "DONT CARE

"DEFINE EQUATIONS
" NOTE: ! = INVERSION
it & = AND
of # = OR
EQUATIONS
dtack=(!dtack681)#(sramen&sram delay)#(!romen&romdelay);
berr = berr delay;

END dtackandbus error generation

128

,'

THIS FILE USES DATA I/O'S ABEL DESIGN LANGUAGE
TO GENERATE A JEDEC FILE TO PROGRAM AN ALTERA
EP310 ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD).

I

MODULE outputenable write enable FLAG '-XI'
TITLE 'SRAM WRITE ENABLE AND SRAM AND ROM OUTPUT ENABLES FOR

THE MINIMAL SYSTEM'

u63 DEVICE 'E0310';"Abel V2 must be used for this device.

"DEFINE LABELS ASSOCIATED WITH INPUT AND OUTPUT PINS
if FOR THE EP310

- INPUT PINS
rw,win,uds,lds,mas,as,pudsi,pldsi PIN 1,2,3,4,5,6,8,9;

OUTPUT PINS
oelb, weu34, weu35, oehb, pudso, pldso, pas

PIN 13, 14, 15, 16, 17, 18, 19;

"ASSIGNMENT STATEMENTS
h = 1; "HIGH
1 = 0; "LOW
x = .X.; "DONT CARE

"DEFINE EQUATIONS
" NOTE: ! = INVERSION
is & = AND
it # = OR
it rw = read
If !rw = write
EQUATIONS
!weu34 = !rw & !pldsi;
!weu35 = !rw & !pudsi;
!oehb = rw & !pudsi;
!oelb = rw & !pldsi;

END outputenablewriteenable

129

to

of THIS FILE USES DATA I/O'S ABEL DESIGN LANGUAGE
TO GENERATE A JEDEC FILE TO PROGRAM AN ALTERA
EP310 ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD).

MODULE interruptcontroller FLAG '-Xl'

TITLE 'INTERRUPT CONTROLLER FOR THE MINIMAL SYSTEM'

"THIS IS NOT UPWARDS COMPATIBLE FOR THE FULLY INTEGRATED SYSTEM

u0O DEVICE 'E0310'; "Abel V2 must be used for this device.

"DEFINE LABELS ASSOCIATED WITH INPUT AND OUTPUT PINS

FOR THE EP310
- INPUT PINS

al,a2,a3,as,irq681,fcl,fc2,fc3 PIN 1,2,3,4,5,6,7,8;

- OUTPUT PINS
iplO,ipll,ipl2,irack681 PIN 16,17,18,19;

"ASSIGNMENT STATEMENTS
h = 1; "HIGH
1 = 0; "LOW
x = .X.; "DONT CARE

"DEFINE EQUATIONS
" NOTE: ! = INVERSION
of & = AND
go # = OR
EQUATIONS
!irack681 = al & !a2 & !a3 & !as & fcl & fc2 & fc3;
iplO = h;
ipll =h;

ipl2 = irq681;

END interrupt_controller

130

APPENDIX E: SYSTEM DIAGRAMS

In this appendix are the wiring diagrams which implement the

master circuit board subsystem and system controller subsystem

which are discussed in Chapter IV. These diagrams were produced by

the OrCAD/SDT III computer-aided design (CAD) tool. It is,

however, the integration of these various components into a multi-

processor system that comprises the work that is original to this

thesis.

131

0 0

'-4 01 0

o 0

uC

>1 m

Q> 0
4- -4-4 1

0

-4

0

C-i C-! 'H 4 &4 C-aE4
a UC) 4-i U) 41) ~ - ji - : -H

c))-H- 1 j)a 1 U) 0)- CO -H E- W-H

(C4 0 U *C40 00 0 u u0
(J L4 U 0C4 4C

w -- 0) -H E-~)- Ul0--
a u0 > U

1-4
_ _ _ _ _ _ .1-) C >1-

$-4 1--4 w- C:-4
0 r- .0 mu 4-)4-
O.4 0- HH
I w-~

04i r-4~4J uO0

:j 0 . ia4 r-

4-)
-d > C > 4-

Cu 4-1 4-1 4-) -W ::I-)4

-H-H14 - > C H - C) -H

E- W U u 00 '- - - 0 m 4-u a) TI

-14 -4 4 : (D 0 -r- Q)-44Z0-

(nY~

CN -4q

co C'4-3)

132

00

0 04
4 4 4

~4) a)

F C-4
0 (

4 0c

U) 410
wl - -4 0

:5 Q) :J -4
> C)c

4 -44

0

1-4 u

E- W

0
-'-4 >1
4J S-
m~ 4

C, Si 4

44

S>9
C*4 S-i

Cl) -H

a) 4 0

133

-

S-4
.- I

0

0

0

CD 0

co u

u U.:
m I Q m~ ~~~ > w r

E- l

+NI

>

+ Id

+N

:3 LO)

+N

U..)
+ N

LO)

134

CN

E-4 w0

01 E -4-H -
10~ 41 J

4~ 4

a)-

a))

E-4

-H

I~ u>

* a) -4 f

(9 0

o -011- C

-H-

-E4

01-1 u

a) * N N>4

() *H (1
'-4 -4 -H

0~

01 4-1 C:

'I40 E- E-4 U
a1) 41 70

LO LC)
LO + + 0
+ u

135

CN r-4 >

4J

U) w) U)

U) U) -4U).
(j) rrHC

CD CD U- U

C> 0 O U N -'-
r-4 U-) (N r-4 U0

A A A A s~4

N N N N -4 a
0 C

4-))
4 (N >4C

-H 0
4.J -4 L

0

U
Z -H~ 0

E-4

E- 4

4>4

4J -

4 W >

4- .4 -

>4 0 U

-4

: ' 0)

0OU C:
04 c< 0

H- E-U

0 3- 0-

UU

136

-44

>1 -4

4J u
-4 0

H u .4 4

(1) ') Cl
-44 .1-4

4~ 41;~0

1--4
C: l)

o o o ; 0 >4

09 - 4

t1 :: I- I- -14 I - I- *
c u w. E-4 U.. 0 . 0 . 0 0 0H0 >

- -, 4J W >,--4*-

U4> -- -44C w <

7) -HU C:

00 -H) Lr

"D -T -44-40 1 4 0 X 4
It 0-0U4 U)U)0U - - -

N - 4 H w -- 4 '.

*'- E- a) u 9 -

00 U D
E-4 x C

04 Lf 44- ODcoID -
Z~ 0

a±O0) 0 0 u u- E-

0UE w0a)

-H 44~ 09 -4 -4 *oOE -
C 44 0 C: w 0- -

U 0 1:4 U O1 1

-~V -- -- -- -- -- -- -- -
<l M- ,:I Zn 0o M

0. . 0 0. 8. 0. . 0 0 0. 0 0 0

A .0 * ~ 0

137 ~~j~ 4 ~ 0--~

-K

II

-4 00C)

04 a~4 CI

C:-4-

c4-)

4 -4

E-4

C; *- N

N -N

4M -)z4
a4 4 n00

I I N NI~JJ

13+

,4 -4

Q) C14

'-4 04
40 - c

E-4 -4

-K k N

..) f U) 6 6q11

0 0 -:3 >4

:D P ' 44) 4-/) -

N1 .- I) >1(1

K4 w 4 j -1

4 I) 0l -4 C- 0 U

.+ a)4 .14 a)C~

-1 >1 4-3 u U K

4-H 4(() 3- --4 >1 4 a)f-

0 4) 4 C 4- -H -q -4 -

4-) -70 -0 4- -- 3 4-
-H --i u (13 5- -1 - A)

-H U) (t -H U aC): 3-
a) =) U 4-i U 4- 4 0'0 ' N
1-4 -H 0l-- - 1 1 1

-H w ku00r
o0 :3 >4-, - -4U)U

0 W- -H0 (1) -H(-H(-H(
4-i U) 5-:D5- W 4 4--i >)

5-i a) 4- -H 13

a)) 0

C) CD -4 U) ~ -)-U-N- - -)-

o N (v T n/)r r-4 r-4 r-4 a-H-H-r-4a)-
s-i~ -~ -~~ -~ -4- -~ - -O~ - - - -

>1 >1

a a4

1300000)

U~a)
+K -K

a4 r-OL4 d~UCL4 - W 0
'-4

4)

4

U -q .-4 *-4

E-U ELJ

-2r 7t

E-

< a4 U-) I

04 a4 -4 'I

140

Lfl

541

'-4 0
0 tp

L(0

N N~flNE- CT- ~

14-

C'-4

C]4

(N141

K 4 K S-4

OD 00 c 00000

E- 4 4- 44-1 4-i
n >4 >4 >>4 >4

0O 4 0: 04 44

i-I + 0Q 00 04

4-i

04 N

4(x 4 9 0 E-H a)

4lC~lc) 4 -4H *H4

0000 u11

4

4-
>11

00
u 4-i

N a)- -H

o 04
-H

0O u

00

Ua)
a) >1

we~ VC) si '-4 >4 >4

$~) .-4 $41- -1-i)-H-H

c Wt) ~-4H-4 0 u 0C'n
S0 ;3 -H :0 0 u 4

0K w440 -H.HL.0
~ -K -H (J)U)0 -4-4 U 0

4l Ole P4) DI C) W 14 0- :3C
04 C'4 04 a4 0 (1) 00 a)3 U).0 (1)

E! Eia4 E E 0 04Cz

00 0 00 0 0 0 0

Cf I Il il Iul

z

142

U -H

a44

- -

'-44

1434

-9 r- I

u -K

C),

00 0(a

-C~~~~~- -'---4cIc I -4ki

1z4 0 "3

E- X I

'.4

0-

TU

1444

U - 4

V)4

00
u Ou

N --------

U 4J

a a 145

Ur)

~ CV)

(1) 0-

0)(1

__ _ __ _ 0r0

(0 C) -4

C1U

E-4 2:

4

146

4

OC 4 2 4 I 14 C - -C-C ;; -.' C -C -C C - C CU.-U. .-

Un

+ k

I4 -H

Q)

4J >i0 H
* > 54 >1 0-

->1 Q

r-
-O 0- E

OW 4-. 41 -47 --

4.,
$44

a) a)

- 1 1 j4

0 4-) a)O

Wa :3 a) 0 a)0
a)p 0 -W >1 N4

a) ~ U (n4>10O

>1 0)

u) 4.) 4-A) N 0)

W~IJ 0 4- a1a)>V
>1N0 U 0) r a)v'4 -C 4 -4

'.0~~ 04C-) 0 , 0)HN*1

-4 -I 41) N :E-4 -4

oj 0 a) -4 $4~-4) 0 0)

.I >N 0* Qa)o a x14
C- -4 4U N)E-

x NOO O:NNE-4 UE-E--
E-4 4) * L4 4 w E (O

0 E0 4 0 0- 0-

0 00 -

w 0 4

W NZ H00000000j444"E- 000 0

If))

4~E- 44
14

N . g O '

I- S N 0 0 0 0 0

NN m WN k 4 4- 4a

- - - - - - -

a a 0 0 0 0 0 0 - NSS

t-N N N N "'

N

1-4 0 E-

%.0 E-' co c

f4 0~~ -~ I- - Li'i

148

(-4 1
-W 4

F-4H

44 U

0 CD)

I'D r-4

-K

4 -K K -4 4

--44 0.0

_ _ _ __ 4~-4N F-4 (-4

C-.-'

E-4 C

CN >10 CY a co 0Y a 0 a u a 0 a N

a4 :3

$4
r.

4 (N. :t uwi-

(1)
L

54

>1 ') U4 o
4 4- A4 I-. + 4

v(.4 N4 4 . a

C-i U Li

m) 0 -4 -H'

u o 0 1
Z:) U) 4. :3w 4)

>ia4 EI >iC)
r= 4>i S EISr=
0SJ- 0 4f 0J 0 0 0

U -H E- W 44r"4 J44 P >1L

-H x4 mH U -H (C

W '~U -H- -U LuuV
co- ZE4'4U S-4I4

-H T Jh .

~149

N m m mmm

w 0

AK

-4-
UO

1E4

U

$044 0

- -N ~ .NE-U w~

%) " - 1 .,

C C-)
C> LAr

N LA3-
- N ~ ~ 14 .1-)

.14 u >4 >
- * < 1-f 41

-4E-4 0 a) uw w

m0 040 0 0 0 0 0

0 _ 4 -14 -4

• .a W ' ,. 0U un -4 CN -4K (n E 0 -4 1-4

w a)' Ut 4 r4'T>) 1-4H * -

u~'- u 4

L - -4E-4 N =f:) U) t1

u C

5 U)

n 000 u m J

N00 U -4 -H
x > u -u l 4 4J~ x- 0

O'I~ 0A 0 0) - 0 0 0

E-WN4C * 44C .E C 4

+ (0 U) I I I I I

CLA~ 04 Un ka r w (
N0

15

m co -K i -'K
(D u Z Z ZZ Z E- HE4E

(D (DU (D) N () -I

m ca mu u u

+ 3v -' 3 r_). 3

.x hi 4c hi u i 4 i
6c 61 W 0 3

'H4 -H

' I J 1 -1 3'

-Z -M -Z -0 z ~
w 0

Iv z

K 4CH 0 z z -H

12 0 4' vH-U '-e

-4H 0H
Hm~Q~L(C~ Q K4 Q.

(NO~~ Q.Q 0WC:E0--4

0 00 044JC 4$4 >
'0 -J 0-(0 44J

49 4c4 4' CI) = IJ-I4

> U -4jU .J 3

1513U 4(U

4
-4

U a)

0H

U)

1-44
a)4

E-4 14 O

U,4)
0

CDl

4-J ~

0 14*-H ao 14

_____ E-41

0

F- I -e. - E F- 152

>1

.4-)

4C ... U

1-4

>4 >91- 44Ju >

-H -H U-,-49d 144

4J U Q)-H-H-H4 -4 0

:3 *H 4 W 4
. UOD -4 U4 'Li 0

w 4 -I) nUCJ-r- 0 CQ (
Wri -4 U U U C

o4 >9 -4 -~ W C:

U4 4 UQ U -1- 0 1-

0 U 0 u)
w0 0)) a H m.- C)0):

u 0H1-4 -H
EE 4J 04 E '0 ~ 0z m

..) 0 0,

U' x 4-1 0 -n N -~ u~I f r ~-

0~ 0~ 0 0

V~UI)) CO) 0')Z --U

E--

co V)U) Z -C~- V)4 Z

a, 4 0

-l -n -4
N-~

-

153

0

ma

-'4 >1

- 4 N

'-4

-kl-

rd 1- E0 1'-

415

(44

0

-'4 i

U -)

1--4

~~~a ().~.4 a

E-4W C-

k0 E- - - 1
E-I -4 44

N r-4 Cj U-)-4 ,

a4 < 0
000

co - - o 4O

155



-H

$'4

u

0

-4

L11

C/CD

w 0)

N~~ u -

N- N N

+ 5~00

1 56



>1
5-4

C)

0
E- -4
W 4-)

E-4

>4

+ N>4

U)

E-H

0
H

4J-

00

4C.)

5-W4

LOU'

15



U)

TrF r11I I I I d d -I~ 1 1 11 1 1 1;; 1 14

$-4

E-4
2- 4 ,T ~ .N N~lNN N~fE-f U

.3)

I--**--4 Id

Cx4 -44

4-4- ()H>

U -4 L

5-4 
+

-H s-m
034 0I

0 w0

E- - - - > , )L c -

>: -4 --

158



LIST OF REFERENCES

1. Stone, H.S., High-Performance Computer Architecture,
Addison-Wesley Publishing Company, Reading, Ma, 1987.

2. Clements, A., Microprocessor System Design: 68000
Hardware, Software, and Interfacing, PWS Publishers, Boston,
Ma, 1987,

3. Borrill, P.L., "Microstandards Special Feature: A
Comparison of 32-Bit Buses", IEEE MICRO, Vol. 5, No. 6, pp.
71-79, December 1985.

4. The VMEbus Specification, Printex Publishing, Inc., Tempe,
Az, 1985.

5. Pri-Tal, S. and MacKenna, C., "Understanding VMEbus
Architecture", Electronic Products, Vol. 27, No. 19, pp.
103-110, 15 March, 1985.

6. Stone, H.S., Microcomputer Interfacing, Addison-Wesley
Publishing Company, Reading, Ma, 1983.

7. M68000 8-/16-/32-Bit Microprocessors Programmer's Reference
Manual, Prentice-Hall, Englecliffs, N.J., 1986.

8. MC68452 Bus Arbitration Module Advance Information, Motorola
Semiconductors, Phoenix, Az, 1985.

9. 68000/08/10 Cross Assembler, 2500AD Software, Inc., Aurora,
Co, 1987.

10. MC68000 Educational Computer Board User's Manual, Motorola,
Inc., Tempe, Az, 1982.

11. ABEL 2.0, Data I/O Corp., Santa Clara, Ca, 1986.

12. Brooks, S.L., "The Design of an Intelligent Multidisk
Control Module for VME bus Based Systems", Master's Thesis,
Naval Postgraduate School, Monterey, Ca, December 1987.

13. Memory Management Unit Advance Information, Motorola
Semiconductors, Phoenix, Az, 1983.

14. Microprocessor Data Manual, Signetics Corp., Sunnyvale, Ca,
1986.

159



15. MC68681 Dual Asynchronous Receiver/Transmitter (DUART)
Advance Information, Motorola Semiconductors, Phoenix, Az,
1985.

16. Altera Data Book, Altera Corporation, Santa Clara, Ca, 1987.

17. DRAM Dual-Ported Controllers Product Specification,
Signetics Corp., Sunnyvale, Ca, 1987.

18. MC68010/MC68012 16-/32-Bit Virtual Memory Microprocessors
Advance Information, Motorola Semiconductors, Phoenix, Az,
1985.

19. MacGregor D. and Mothersole D.S., "Virtual Memory and the
MC68010", IEEE Micro, Vol. 3, No. 3, pp. 24-39, June 1983.

160



BIBLIOGRAPHY

1. 74LS764 DRAM Controller Product Specification, Signetics
Corp., Sunnyvale, Ca, 1986.

2. Baliga, S., "Simplifying VMEbus System Design", VMEbus System
Magazine, pp. 23-25, Fall/Winter 1986.

3. Baliga, S., "Three-Chip Control Set Trims VMEbus Logic For
Asynchronous Systems", Electronic Design, Vol. 33, No. 2, pp.
207-214, 24 January 85.

4. Brown, G. and Harper, K., MC68008 Minimum Configuration
System, Motorola, Inc., 1984.

5. Harper, K., A Terminal Interface, Printer Interface, And
Backqround Printing For An MC68000-Based System Using The
MC68681 DUART, Motorola, Inc., 1984.

6. MacKenna, C., "Bus Controller Chip Lets Processor Board
Switch Master And Slave Roles", Electronic Design, Vol. 32.
No. 13, pp. 243-254, 28 June 1984.

7. MC68000 Educational Computer Board User's Manual, Motorola,
Inc., Tempe, Az, 1982.

8. MTT8 Course Notes, Motorola Semiconductors, Phoenix, Az, 1986.

9. Reddy, A., Dynamic Memory Refresh Considerations, Motorola,
Inc., 1983.

10. Scales, H., An Evaluation Tool For The MC68451 MMU, Motorola
Inc., 1982.

11. Scales, H., Virtual Memory Using The MC68000 And The MC68451
MMU, Motorola, Inc. 1982.

12. West, T., Dual-Ported RAM For The MC68000 Microprocessor,
Motorola, Inc., 1982.

161



INITIAL DISTRIBUTION LIST
No. Copies

1. Library Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

2. Chairman, Department of Electrical and
Computer Engineering (Code EC)
Naval Postgraduate School
Monterey, California 93943-5000

3. Dr. Larry Abbott 1
16047 Arborlea Dr.
Friendswood, Texas 77546

4. Professor Mitchell Cotton, Code EC/CO
Department of Electrical and
Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5000

5. Professor Frederick Terman, Code EC/TZ
Department of Electrical and
Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5000

6. Commanding Officer
Attn: Lieutenant David M. Sendek, USN
Naval Oceans Systems Center (NOSC), Code 845
271 Catalina Blvd.
San Diego, California 92152-5000

7. Roberto Ventura Crispino, LT. CN
Apartado Aero 2845
Cartagena, Colombia

8. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

162


